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1 Introduction

This thesis introduces both the theoretical foundations of Markov-Switching models and their practical

implementation in the newly developed R package MSARM. A systematic presentation of the underly-

ing theory is especially valuable given that Hamilton, who pioneered these models in his seminal 1989

paper ”A New Approach to the Economic Analysis of Nonstationary Time Series and the Business

Cycle”, presents derivations in a rather fragmented manner across several works, see Hamilton (1989,

1990, 1994), often with limited algebraic detail. The first part of this thesis therefore offers a concise

and accessible summary of Hamilton’s framework, tailored for undergraduate readers. Building on

this, the second part presents MSARM, which implements and generalizes Hamilton’s application of

the Expectation-Maximization (EM) algorithm to cover a broader class of AR model structures. To

the best of the author’s knowledge, this systematic extension and its practical implementation within

the R ecosystem are novel contributions. Compared to MSwM, a widely used alternative package

that relies on different estimation techniques and often fails in more generalized scenarios, MSARM

offers greater robustness, especially in those more generalized cases. This is demonstrated through

approximately 300 simulations comparing both packages.

2 Brief Remarks on Notation

We start with a short discussion of the notation utilized in this paper. The density function of a

continuous random variable Y will be denoted as fY (y), the conditional density function, based on

another random variable X will be denoted as fY |X(y|x). We want to emphasize that in this notation,

the subscript denotes the arguments of the density function, and the values in the parentheses denote

the point at which the density function is evaluated. Furthermore we define a generalized density

function for a vector of a discrete random variable S and a continuous random variable Y as fY,S(y,s) =

fY |S(y|s) · P(S = s). Last but not least it should be noted that we will denote a parameter vector

θ that influences the distribution of a random variable with a semicolon after the arguments in the

density function’s subscript. For probability functions, the parameter vector will also be denoted with

a subscript. For example, for a continuous random variable Y , we could write fY ;θ (y) or for a discrete

random variable S, Pθ (S = s). It should be noted that both could be seen as functions in θ .

3 Markov-Chains and Autoregressive Processes

3.1 Markov-Chains

With the general notation out of the way, we can start to build the foundation of Markov-Switching AR

models. For that, we start with Markov-Chains in general. Markov-Chains are stochastic processes

satisfying the so-called Markov property. More precisely, we consider a sequence of random variables

St ,St−1, ... that can take values in the set {1, . . . ,N}, and fulfill the property:

P(St = j | St−1 = i, . . . ,S1 = a1) = P(St = j | St−1 = i). (1)

1



This means that the next state is conditionally independent of all previous states given the current state.

The transition probabilities between the states of such a Markov-Chain are usually summarized in a

so-called transition matrix Π, where the ith row and jth column element of Π is given by

(Π)i, j = πi, j = P(St = j | St−1 = i).

Thereby (·)i, j indicates the ith row and jth column element. Additionally, we want to point out that

we will denote the transpose of a matrix A as A′ throughout this thesis. Therefore, Π is defined such

that the rows indicate the previous state and the columns represent the state being transitioned into.

Furthermore, the sum of the row elements must equal 1. It has to be noted that we can represent

a Markov-Chain as a Vector-Autoregressive-Process (VAR). The following discussion of represent-

ing Markov-Chains as a VAR closely follows Hamilton (1994, page 678-680). Suppose we have an

underlying Markov-Chain St ,St−1, ..., and the state space is {1, . . . ,N}. We then define:

ζt =



(1,0, ...,0)′, if St = 1

(0,1, ...,0)′, if St = 2

...

(0,0, ...,1)′, if St = N

. (2)

Thus for St = i, ζt equals the ith column of IN . If St = i, then the jth element of ζt+1 is a random

variable with P((ζt+1) j = 1|St = i) = πi, j. Thus

E(ζt+1|St = i) =


πi,1

πi,2

...

πi,N

 . (3)

Furthermore, one should note that E(ζt+1|St = i) is the ith column of Π′. Knowing for St = i, ζt is equal

to the ith column of IN it follows that E(ζt+1|ζt) = Π′ζt . Due to (1) it holds that E(ζt+1|ζt ,ζt−1, ...) =

E(ζt+1|ζt) = Π′ζt , therefore we can write:

ζt+1 = Π′ζt + vt+1; where vt+1 = ζt+1−E(ζt+1|ζt ,ζt−1, ...), (4)

(4) implicates that:

ζt+m = (Π′)mζt +(Π′)m−1vt+1 + ...+Π′vt+m−1 + vt+m. (5)

This is due to the following derivation:

ζt+m = Π
′
ζt+m−1 + vt+m

= Π
′(Π′ζt+m−2 + vt+m−1)+ vt+m

= Π
′(Π′(Π′ζt+m−3 + vt+m−2)+ vt+m−1)+ vt+m

= ...

= (Π′)m
ζt +(Π′)m−1vt+1 + ...+Π

′vt+m−1 + vt+m.

2



An m-period ahead forecast for a Markov-Chain can therefore be constructed in the following way:

E(ζt+m|ζt ,ζt−1, ...) = (Π′)mζt . (6)

This holds because:

E(ζt+m|ζt ,ζt−1, ...) = E(Π′ζt+m−1 + vt+m|ζt ,ζt−1, ...)

= E((Π′)m
ζt +(Π′)m−1vt+1 + ...+Π

′vt+m−1 + vt+m|ζt ,ζt−1, ...)

= (Π′)mE(ζt |ζt ,ζt−1, ...)+(Π′)m−1E(ζt+1−E(ζt+1|ζt ,ζt−1, ...)|ζt ,ζt−1, ...)+

...

+Π
′E(ζt+m−1−E(ζt+m−1|ζt+m−2,ζt−m−3, ...)|ζt ,ζt−1, ...)

+E(ζt+m−E(ζt+m|ζt+m−1,ζt+m−2, ...)|ζt ,ζt−1, ...)

= (Π′)m
ζt +(Π′)m−1[E(ζt+1|ζt ,ζt−1, ...)−E(E(ζt+1|ζt ,ζt−1, ...)|ζt ,ζt−1, ...)]+

...

+Π
′[E(ζt+m−1|ζt ,ζt−1, ...)−E(E(ζt+m−1|ζt+m−2,ζt−m−3, ...)|ζt ,ζt−1, ...)]

+E(ζt+m|ζt ,ζt−1, ...)−E(E(ζt+m|ζt+m−1,ζt+m−2, ...)|ζt ,ζt−1, ...)

= (Π′)m
ζt .

We could now also condition on other random variables, like (Yt ,Yt−1, ...). We summarize these ran-

dom variables in a vector Yt :

Yt = (Yt ,Yt−1, ...), (7)

the realisation of Yt will be denoted as:

y⃗t = (yt ,yt−1, ...). (8)

Furthmore we define:

Yt:τ = (Yt ,Yt−1, ...,Yτ), (9)

the realisation of Yt:τ will be denoted as:

y⃗t:τ = (yt ,yt−1, ...,yτ). (10)

Generally speaking, YT will be the total time series of interest and y⃗T the observed realization. If the

process is governed by regime St = j at date t then the conditional density of Yt is assumed to be given

by fYt |St ,Yt−1;α(yt | j, y⃗t−1). Thereby α is a vector of parameters characterizing the conditional density

function. Furthermore it is assumed that the conditional density depends only on the current regime

St and not on past regimes, to be more precise it shall hold:

fYt |St ,Yt−1;α(yt |st , y⃗t−1) = fYt |St ,St−1,...,Yt−1;α(yt |st ,st−1, ..., y⃗t−1). (11)

Additionally, St+m shall be conditonally independent of Yt given St , for m≥ 1, therefore it shall hold

that:

Pθ (St+m = j|St = i) = Pθ (St+m = j|St = i,Yt = y⃗t). (12)

3



One could now condition on this random vector Yt , given a parameter vector θ , which includes the

transition probabilities of the Markov-Chain, as well as the parameters of the distribution of Yt , there-

fore θ = (Π,α). It should be noted that Π has to be understood in this notation, as part of θ , as the

vector of transition probabilities, instead of the matrix of transition probabilities. Still, we believe that

this notation improves the readability and understanding of what θ is compared to other notations. We

can now write:

ζ̂t|t = Eθ (ζt |Yt = y⃗t) =


Pθ (St = 1|Yt = y⃗t)

Pθ (St = 2|Yt = y⃗t)

...

Pθ (St = N|Yt = y⃗t)

 . (13)

We now want to estimate ζt+m with ζ̂t+m|t = Eθ (ζt+m|Yt = y⃗t). From earlier we know that:

(Eθ (ζt+m|Yt = y⃗t)) j = Pθ (St+m = j|Yt = y⃗t)

=
N

∑
i=1

Pθ (St+m = j,St = i|Yt = y⃗t)

=
N

∑
i=1

Pθ (St+m = j|St = i,Yt = y⃗t)Pθ (St = i|Yt = y⃗t)

=
N

∑
i=1

Pθ (St+m = j|St = i)Pθ (St = i|Yt = y⃗t)

= ((Π′)m) j,ζ̂t|t .

Applying this to all elements we end up with:

Eθ (ζt+m|Yt = y⃗t) = (Π′)mζ̂t|t , (14)

compare Hamilton (1994, page 693). This property will be essential later, therefore it is important to

keep in mind that this indeed holds true.

3.2 Autoregressive (AR) Processes

Working with time series can be tricky, as one always deals with stochastic processes. The idea is the

following, if one observes a time series y⃗T = (y1, ...,yT ), then the observations are the realizations of

the random variables YT = (Y1, ...,YT ). These random variables, are connected to each other, since

they all stem from the same underlying stochastic process. The goal is now to estimate said stochastic

process. Before estimating the parameters of a process, it is necessary to decide which process to

assume as the underlying (or at least sufficiently similar) process. A rather often utilized process-

family are AR processes, an AR(m) has the form:

Yt = c+φ1Yt−1 + ...+φmYt−m +Ut ; where Ut ∼WN(0,σ2).

Thereby WN(0,σ2) denotes a zero-mean white noise process with variance σ2. The white noise

distribution that is most often used is the normal distribution. Therefore

Yt = c+φ1Yt−1 + ...+φmYt−m +Ut ; where Ut ∼ N(0,σ2),

4



would qualify as an AR(m). This framework of an AR(m) with gaussian white noise will be the

foundation on which Markov-Switching AR models are built in the next section.

4 Markov-Switching Models (MSM)

4.1 Introduction to Markov-Switching Models

The basic idea of Markov-Switching models is that the stochastic process Y1, ...,YT is itself influ-

enced by another, underlying stochastic process, in this specific case by an underlying Markov-Chain.

Therefore, a Markov-Switching AR(1) could take the following form:

Yt = cst +φstYt−1 +Ut ; where Ut
i.i.d.∼ N(0,σ2). (15)

We could alternatively write:

Yt = X ′t βst +Ut with Xt =

(
1

Yt−1

)
and βst =

(
cst

φst

)
.

Here St follows a first-order Markov-Chain and st is the value of the Markov-Chain at time t. Further-

more, important assumptions are that (11) and (12) hold true, that there is a maximum lag order (in

this case 1) as well as that Ut shall be conditionally independent of St−1,St−2, ... given St and that St+m

shall be conditionally independent of Ut ,Ut−1, ... given St , for all m ≥ 1. To put it more formally, it

shall hold that:

fUt |St ;α(ut |st) = fUt |St ,St−1,...;α(ut |st ,st−1, ...), (16)

Pθ (St+m = st+m|St = st) = Pθ (St+m = st+m|St = st ,Ut = ut ,Ut−1 = ut−1, ...). (17)

Additionally, a vector of the form of (7) would represent the vector of all observable variables until t.

It has to be emphasized that the density of Yt conditioned on St = st and Yt−1 = y⃗t−1 has the following

form:

fYt |St ,Yt−1;α(yt |st , y⃗t−1) =
1

√
2πσ

exp

 − (yt − cst −φst yt−1)
2

2σ2

 . (18)

Here we can also see that (11) is indeed true for Markov-Switching AR(m) models with gaussian

white noise, as long as earlier states of the Markov-Chain than the current state, st don’t influence

the parameters that describe the generation of Yt , i.e the intercept, the coefficients and the error-term

variance. For this specific AR(1) α would consist of c1, ...,cN ,φ1, ...,φN and σ2. We summarize the

values of the conditional density functions for all potential states of the Markov-Chain in the following

vector:

ηt =


fYt |St ,Yt−1;α(yt |1, y⃗t−1)

...

fYt |St ,Yt−1;α(yt |N, y⃗t−1)

 . (19)

Now that this model class has been introduced, we want to further investigate the question of optimal

inference regarding the states of the Markov-Chain, often called regimes. In the following sections,

the goal is to estimate the parameter vector θ = (Π,α) given Yt = y⃗t .

5



4.2 Optimal Inference of the Regimes and Derivation of the Log-Likelihood

But before we follow this endeavour, we peak into a world where we assume that θ is known. Given

θ we want to get inference regarding the regimes of the time series. We start by summarizing the

Pθ (St = j|Yt = y⃗t) and Pθ (St+1 = j|Yt = y⃗t) for all j = 1, ...,N, similarily to (13) in:

ζ̂t|t =


Pθ (St = 1|Yt = y⃗t)

...

Pθ (St = N|Yt = y⃗t)

 and ζ̂t+1|t =


Pθ (St+1 = 1|Yt = y⃗t)

...

Pθ (St+1 = N|Yt = y⃗t)

 . (20)

The claim Hamilton makes now is that the optimal inference can be derived by iterating over the

following equations:

ζ̂t|t =
(ζ̂t|t−1⊙ηt)

1′(ζ̂t|t−1⊙ηt)
, (21)

ζ̂t+1|t = Π
′
ζ̂t|t . (22)

Where ⊙ denotes element-by-element multiplication. In addition, the value of the Log-Likelihood

function for the vector of all observations y⃗T at the point θ is gained as a side product:

L (θ) =
T

∑
t=1

ln( fYt |Yt−1;θ (yt |⃗yt−1)), (23)

fYt |Yt−1;θ (yt |⃗yt−1) = 1′(ζ̂t|t−1⊙ηt), (24)

see Hamilton (1994, page 692). That this is indeed true is shown in the Appendix, section 9.1. Based

on this system of two equations and a given θ we start with a random ζ̂1|0 and iterate over all t until we

reach T (T is the number of periods for which observations of the time series exist). This gives us the

regime probabilities conditionally on the data until t. Additionally we get the Log-Likelihood function,

which can be optimized in θ to derive the Maximum Likelihood estimate of θ . It is important to note

that a direct optimization of L (θ) can be computationally expensive and often leads to suboptimal

results. Therefore, Hamilton introduced, in his paper ”Analysis of Time Series subject to Changes in

Regime” from 1990, an iterative optimization algorithm for L (θ), which is an application of the EM

algorithm. Applying a specific variant of the EM algorithm to this optimization problem, instead of

more general optimization algorithms can lead to better and computationally less expensive results,

see Hamilton (1990, page 40-41). The details of this specific application of the EM algorithm for the

optimization of L (θ) are shown throughout the following sections, this includes a derivation of an

algorithm developed by Kim (1994), which can improve some aspects of the application of the EM

algorithm as shown in Hamilton (1990). The derivation shown of the ”Kim-Algorithm” is based on

Hamilton (1994, page 700-702).

4.3 Smoothed Inference over the Regimes

Before further investigating the optimization of the log-likelihood and the associated parameter esti-

mation, we want to first discuss how to get inference on Pθ (St−1 = i|YT = y⃗T ), as this will be essential
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for the application of the aforementioned EM algorithm. Estimating Pθ (St−1 = i|YT = y⃗T ) is often

called ”smoothed inference” for the regimes. To get this smoothed inference, we apply the algorithm

from Kim (1994). The proposition is that, assuming St follows a first order Markov-Chain and that the

conditional density, fYt |St ,Yt−1;α(yt | j, y⃗t−1), depends only on St ,St−1, ... through St , i.e. that (11) holds

true, an assumption we have already made throughout section 3.1, it shall hold that:

ζ̂t|T = ζ̂t|t ⊙ (Π(ζ̂t+1|T (÷)ζ̂t+1|t)), (25)

where (÷) is the symbol for element-by-element division, see Hamilton (1994, page 694). To get the

values of Pθ (St−1 = i|YT = y⃗T ) for t in 1, ...,T one starts with t = T −1 and iterates backwards. The

derivation can be found in the Appendix, section 9.2.

4.4 Optimisation of the Conditional Log-Likelihood

4.4.1 General EM Algorithm Theory

We now turn to the EM algorithm. Assuming we observe y⃗T = (y1, ...,yT ), a trick that is often utilized

is to optimize a density function of the form fYT ,...,Ym+1|Ym,...,Y1;λ (yT , ...,ym+1|ym, ...,y1) in λ instead of

fYT ,...,Y1;θ (yT , ...,y1) in θ . We have to optimize in λ because if we choose such a conditional likelihood

function, then we have to make assumptions about how the initial states (Ym, ...,Y1) are distributed.

The simplest approach is to assume that they are seperately drawn from a distribution with the param-

eters ρ . Thereby ρ shall be unrelated of Π and α . The new parameter vector λ is therefore defined

as λ = (Π,α,ρ). The conditional likelihood function is primarily chosen due to practical reasons.

Optimizing the likelihood function instead is often more challenging and yields next to no additional

gain. Choosing the conditional likelihood enables the application of the EM algorithm, as described by

Hamilton (1990), which estimates the parameters with relatively low computational demands, at least

compared to other numerical methods, see Hamilton (1990, page 40). Still it has to be emphasized

that the EM algorithm that Hamilton introduces only leads to a local maximum of the conditional like-

lihood function, as will be shown throughout this section. Generally speaking, this is not problematic,

as one can start the algorithm with several different values to see whether the results are robust. We

start by defining

Pλ (Sm = sm,Sm−1 = sm−1, ...,S1 = s1|Ym = ym, ...,Y1 = y1) = ρsm,...,s1 , (26)

and

ρ = (ρ1,1,..,1,ρ1,1,..,2, ...,ρN,N,..,N). (27)

Thereby (26) is the vector of population probabilities, which are aggregated in (27). With this we can

now derive the general EM algorithm: We assume we know nothing about λ and it should be chosen

such that the conditional likelihood

fYT :(m+1)|Ym;λ (⃗yT :(m+1) |⃗ym) = fYT ,...,Ym+1|Ym,...,Y1;λ (yT , ...,ym+1|ym, ...,y1), (28)
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is maximized, the optimising λ is called λMLE . Furthermore we define

S = (ST ,ST−1, ...,S1), (29)

s⃗T = (sT ,sT−1, ...,s1), (30)

Zt = (St ,St−1, ...,St−m,Yt−1, ...,Yt−m), (31)

zt = (st ,st−1, ...,st−m,yt−1, ...,yt−m), (32)

fYT :(m+1),S |Ym;λ (⃗yT :(m+1), s⃗T |⃗ym) = fYT ,...,Ym+1,ST ,...,S1|Ym,...,Y1;λ (yT , ...,ym+1,sT , ...,s1|ym, ...,y1), (33)

∑
s⃗T

P(S = s⃗T ) =
N

∑
sT=1
· · ·

N

∑
s1=1

P(ST = sT , ...,S1 = s1), (34)

fYT :(m+1)|Ym;λ (⃗yT :(m+1) |⃗ym) = ∑
s⃗T

fYT :(m+1),S |Ym;λ (⃗yT :(m+1), s⃗T |⃗ym), (35)

and

Qλl ,⃗yT (λl+1) = ∑
s⃗T

ln( fYT :(m+1),S |Ym;λl+1 (⃗yT :(m+1), s⃗T |⃗ym)) fYT :(m+1),S |Ym;λl (⃗yT :(m+1), s⃗T |⃗ym). (36)

Where we call Qλl ,⃗yT (λl+1) the expected log-likelihood. With that remark we finish the necessary

notation, which is based on Hamilton (1990, page 42-44) and Hamilton (1990, page 46-47). Now we

want to show that the EM algorithm works. It is noteworthy that the EM algorithm can be seen from

two different perspectives.

1. λ̂l shall be the solution of the lth optimization problem (of a sequence of optimization problems),

thereby the optimization problems are constructed in such a way that λ̂l+1 leads to a higher value

of the conditional likelihood function than λ̂l , the limit of the λ̂ s leads to a local maximum of

the conditional likelihood function: lim
l→∞

λ̂l = λ̂MLE , see Hamilton (1990, page 47).

2. Alternatively, one could say that if we were to observe S directly i.e. know s⃗T , then the first

order condition (FOC) characterizing λ̂MLE (⃗sT ) would be:

∂ ln( fYT :(m+1),S |Ym;λ (⃗yT :(m+1), s⃗T |⃗ym))

∂λ

∣∣∣
λ=λ̂MLE (⃗sT )

= 0.

However, this set of conditions, one for each possible realization of S , can be weighted by the

probability of actually observing this particular s⃗T . These probabilities are obtained through

inference about S at the given step of the EM algorithm, i.e., P
λ̂l
(S = s⃗T |YT = y⃗T ). The sum

over all weighted conditions for a given λ̂l characterizes the EM algorithm’s update choice for

λ̂l+1, see Hamilton (1990, page 47).

First we want to discuss the EM algorithm as a sequence of optimization problems. λ̂l is the result of

the lth optimization problem, and we start with a random λ̂0 for the first optimization problem. We

choose λ̂l+1 such that Q
λ̂l ,⃗yT

(λl+1) is maximized. We remember:

Q
λ̂l ,⃗yT

(λl+1) = ∑
s⃗T

ln( fYT :(m+1),S |Ym;λl+1 (⃗yT :(m+1), s⃗T |⃗ym)) fYT :(m+1)|Ym;λ̂l
(⃗yT :(m+1) |⃗ym).
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Therefore λ̂l+1 fulfills:

∑
s⃗T

∂ ln( fYT :(m+1),S |Ym;λl+1 (⃗yT :(m+1), s⃗T |⃗ym))

∂λl+1

∣∣∣
λl+1=λ̂l+1

· fYT :(m+1)|Ym;λ̂l
(⃗yT :(m+1) |⃗ym) = 0. (37)

It holds that λ̂l+1 is associated with an higher value of the conditional likelihood function than λ̂l

i.e. fYT :(m+1)|Ym;λ̂l+1
(⃗yT :(m+1) |⃗ym)≥ fYT :(m+1)|Ym;λ̂l

(⃗yT :(m+1) |⃗ym). In the following, we closely follow the

derivation in Hamilton (1990, page 48-49). Per construction λ̂l+1 maximizes Q
λ̂l ,⃗yT

(λl+1), thus:

Q
λ̂l ,⃗yT

(λ̂l+1)≥ Q
λ̂l ,⃗yT

(λ̂l); equal if λ̂l+1 = λ̂l.

We also note that ∀x ∈R+ : ln(x)≤ (x−1). This is because we can show that h(x) = x−1− ln(x) has

a minimum at x = 1 and h(1) = 0. The first order condition is given by:

h′(x) = 1−
1

x
= 0

⇔ x = 1.

That this is indeed a minimum can be shown by checking the second derivative at the point x = 1:

h′′(1) =
1

12 > 0,

thus h(x) has a minimum at the point x = 1 and ∀x ∈R+ : ln(x)≤ (x−1) is therefore a true statement.

We can apply this now and show:

0≤ Q
λ̂l ,⃗yT

(λ̂l+1)−Q
λ̂l ,⃗yT

(λ̂l)

= ∑
s⃗T

ln( fYT :(m+1),S |Ym;λ̂l+1
(⃗yT :(m+1), s⃗T |⃗ym)) fYT :(m+1),S |Ym;λ̂l

(⃗yT :(m+1), s⃗T |⃗ym)

−∑
s⃗T

ln( fYT :(m+1),S |Ym;λ̂l
(⃗yT :(m+1), s⃗T |⃗ym)) fYT :(m+1),S |Ym;λ̂l

(⃗yT :(m+1), s⃗T |⃗ym)

= ∑
s⃗T

ln

 fYT :(m+1),S |Ym;λ̂l+1
(⃗yT :(m+1), s⃗T |⃗ym)

fYT :(m+1),S |Ym;λ̂l
(⃗yT :(m+1), s⃗T |⃗ym)

 fYT :(m+1),S |Ym;λ̂l
(⃗yT :(m+1), s⃗T |⃗ym)

≤∑
s⃗T

 fYT :(m+1),S |Ym;λ̂l+1
(⃗yT :(m+1), s⃗T |⃗ym)

fYT :(m+1),S |Ym;λ̂l
(⃗yT :(m+1), s⃗T |⃗ym)

−1

 fYT :(m+1),S |Ym;λ̂l
(⃗yT :(m+1), s⃗T |⃗ym)

= ∑
s⃗T

( fYT :(m+1),S |Ym;λ̂l+1
(⃗yT :(m+1), s⃗T |⃗ym)− fYT :(m+1),S |Ym;λ̂l

(⃗yT :(m+1), s⃗T |⃗ym))

= fYT :(m+1)|Ym;λ̂l+1
(⃗yT :(m+1) |⃗ym)− fYT :(m+1)|Ym;λ̂l

(⃗yT :(m+1) |⃗ym).

With that we have shown that the algorithm indeed leads to an increase of the conditional likelihood

function with each step. Now we want to show that if λ̂l+1 = λ̂l , then the first order condition for

maximizing fYT :(m+1)|Ym;λ (⃗yT :(m+1) |⃗ym) is fulfilled by λ = λ̂l . This is the case because if:

∂Q
λ̂l ,⃗yT

(λl+1)

∂λl+1

∣∣∣
λl+1=λ̂l

= 0.
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Then:

∂ fYT :(m+1)|Ym;λ (⃗yT :(m+1) |⃗ym)

∂λ

∣∣∣
λ=λ̂l

= 0,

this holds true because:

∂Q
λ̂l ,⃗yT

(λl+1)

∂λl+1

∣∣∣
λl+1=λ̂l

= ∑
s⃗T

 1

fYT :(m+1),S |Ym;λl+1 (⃗yT :(m+1), s⃗T |⃗ym)

∂ fYT :(m+1),S |Ym;λl+1 (⃗yT :(m+1), s⃗T |⃗ym)

∂λl+1

 ∣∣∣
λl+1=λ̂l

· fYT :(m+1),S |Ym;λ̂l
(⃗yT :(m+1), s⃗T |⃗ym)

= ∑
s⃗T

∂ fYT :(m+1),S |Ym;λl+1 (⃗yT :(m+1), s⃗T |⃗ym)

∂λl+1

∣∣∣
λl+1=λ̂l

=
∂ fYT :(m+1)|Ym;λl+1 (⃗yT :(m+1) |⃗ym)

∂λl+1

∣∣∣
λl+1=λ̂l

.

With that in mind, we proceed to consider the second perspective. One could say that the EM algo-

rithm replaces the unobserved scores with their conditional expectation. Assuming we know s⃗T , then

λ̂MLE (⃗sT ) is characterized by the first-order condition:

∂ ln( fYT :(m+1),S |Ym;λ (⃗yT :(m+1), s⃗T |⃗ym))

∂λ

∣∣∣
λ=λ̂MLE (⃗sT )

= 0.

Even so we have no data regarding S we still have inference regarding S , at least for the lth step,

based on λ̂l and YT = y⃗T . We can formulate:

P
λ̂l
(S = s⃗T |YT = y⃗T ) =

fYT :(m+1),S |Ym;λ̂l
(⃗yT :(m+1), s⃗T |⃗ym)

fYT :(m+1)|Ym;λ̂l
(⃗yT :(m+1) |⃗ym)

.

For all possible values of S , which amounts to NT possibilities, there exists such a first-order condi-

tion. If one weights all these FOCs with the probability P
λ̂l
(S = s⃗T |YT = y⃗T ) then we choose λ such

that:

∑
s⃗T

∂ ln( fYT :(m+1),S |Ym;λ (⃗yT :(m+1), s⃗T |⃗ym))

∂λ
·

fYT :(m+1),S |Ym;λ̂l
(⃗yT :(m+1), s⃗T |⃗ym)

fYT :(m+1)|Ym;λ̂l
(⃗yT :(m+1) |⃗ym)

= 0

⇔
1

fYT :(m+1)|Ym;λ̂l
(⃗yT :(m+1) |⃗ym)

∂Q
λ̂l ,⃗yT

(λ )

∂λ
= 0

⇔
∂Q(λ , λ̂l, y⃗T )

∂λ
= 0.

This again is the characterizing condition for λ̂l+1 in the first perspective!

4.4.2 Application of the EM Algorithm to Markov-Switching AR Models

The next essential step in the theoretical exposition is to demonstrate the application of the EM al-

gorithm to models of the type we are using, that is, models with an underlying Markov-Chain and a

dependence on a maximum lag order. Hamilton states that, when using the EM algorithm to maximize
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the conditional log-likelihood, one obtains three equations to iterate over, see Hamilton (1990, page

51). The equations given by Hamilton are:

π
(l+1)
i, j =

∑
T
t=m+1 Pλl (St = j,St−1 = i|YT = y⃗T )

∑
T
t=m+1 Pλl (St−1 = i|YT = y⃗T )

, (38)

T

∑
t=m+1

N

∑
st=1
· · ·

N

∑
st−m=1

∂ ln( fYt |Zt ;α(yt |zt))

∂α

∣∣∣
α=αl+1

·Pλl (St = st , ...,St−m = st−m|YT = y⃗T ) = 0, (39)

ρ
(l+1)
im,...,i1 = Pλl (Sm = im, ...,S1 = i1|YT = y⃗T ). (40)

We show that these equations are indeed true in the Appendix, section 9.3. Given this exposition one

can apply the EM algorithm to a very broad class of models, even broader than just Markov-Switching

AR models, but to actually estimate a specific model, one has to specify the assumed process in more

detail. Hamilton (1990) shows only one potential setup for Markov-Switching AR models, we will

call this setup ”Example 0” throughout this paper. Deriving the results for Example 0 will be the

subject of the next section. After this is done we will show 5 more examples, establishing broader AR

setups, until the theory for estimating any potential Markov-Switching AR model has been shown.

Thereby, Example 1 to Example 3 are specific examples that are introduced to improve the readability

of the general cases, Example 4 and Example 5.

4.4.3 Example 0: Switching Coefficients and Intercept, Non-Switching σ2

Here we assume that the underlying process is given by a Markov-Switching AR(m), which fulfills all

assumptions formulated in section 4.1, the only difference is that the assumed underlying AR process

now has the following form.

Yt = cst +φ1,stYt−1 + ...+φm,stYt−m +Ut where Ut
i.i.d.∼ N(0,σ2). (41)

We could alternatively write:

Yt = X ′t βst +Ut with Xt =


1

Yt−1

...

Yt−m

 and βst =


cst

φ1,st

...

φm,st

 .

The following derivation closely follows Hamilton (1990, page 56-58). First, we see that:

fYt |Zt ;α(yt |zt) =
1

√
2πσ

exp

 − (yt − x′tβst )
2

2σ2

 .

It is important to note that xt denotes the vector of realizations for Xt . Then it holds that:

∂ ln( fYt |Zt ;α(yt |zt))

∂β j
=


(yt − x′tβ j)xt

σ2 , if St = j

0, otherwise

, (42)
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∂ ln( fYt |Zt ;α(yt |zt))

∂σ−2 =
σ2

2
−

(yt − x′tβst )
2

2
. (43)

(43) is indeed true, because:

ln
[

1√
2πσ

exp
(
−(yt − x′tβst )

2

2σ2

)]
= ln

(
1√

2πσ

)
− 1

2

(
(yt − x′tβst )

2

σ2

)
= ln(1)− ln(

√
2πσ)−

1

2
(yt − x′tβst )

2 1

σ2

=− ln(
√

2π)− ln(σ)−
1

2
(yt − x′tβst )

2 1

σ2

=− ln(
√

2π)− ln

((
1

σ2

)− 1
2
)
−

1

2
(yt − x′tβst )

2 1

σ2.

And thus:

∂ ln
[

1√
2πσ

exp
(
−(yt−x′t βst )

2

2σ2

)]
∂
( 1

σ2

) =

(
1

σ2

) 1
2
(

1
2

(
1

σ2

)− 3
2
)
− 1

2
(yt − x′tβst )

2

=
σ2

2
−

(yt − x′tβst )
2

2
.

We insert these results into (39), which leads to:

T

∑
t=m+1

(yt − x′tβ
(l+1)
j )xt

σ2
(l+1)

Pλl (St = j|YT = y⃗T ) = 0, (44)

and

σ
2
(l+1) =

T

∑
t=m+1

N

∑
st=1

(yt
√

Pλl (St = st |YT = y⃗T )− x′t
√

Pλl (St = st |YT = y⃗T )β
(l+1)
st )2

(T −m)
. (45)

(44) is true because (42) can be understood as a function of St , we could write

∂ ln( fYt |Zt ;α(yt |zt))

∂β j
= g j(St) =


(yt − x′tβ j)xt

σ2 , if St = j

0, otherwise

,

thus we can write:

T

∑
t=m+1

N

∑
st=1

N

∑
st−1=1

· · ·
N

∑
st−m=1

∂ ln( fYt |Zt ;α(yt |zt))

∂β j

∣∣∣
α=α(l+1)

Pλl (St = st , ...,St−m = st−m|YT = y⃗T ) = 0

⇔
T

∑
t=m+1

N

∑
st=1

N

∑
st−1=1

· · ·
N

∑
st−m=1

g j(st)Pλl (St = st , ...,St−m = st−m|YT = y⃗T ) = 0

⇔
T

∑
t=m+1

N

∑
st=1

g j(st)
N

∑
st−1=1

· · ·
N

∑
st−m=1

Pλl (St = st , ...,St−m = st−m|YT = y⃗T ) = 0

⇔
T

∑
t=m+1

N

∑
st=1

g j(st)Pλl (St = st |YT = y⃗T ) = 0

⇔
T

∑
t=m+1

(yt − x′tβ
(l+1)
j )xt

σ2
(l+1)

Pλl (St = j|YT = y⃗T ) = 0.
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And (45) is true because:

T

∑
t=m+1

N

∑
st=1
· · ·

N

∑
st−m=1

σ2
(l+1)

2
−

(yt − x′tβ
(l+1)
st )2

2

Pλl (St = st , ...,St−m = st−m|YT = y⃗T ) = 0

⇔
T

∑
t=m+1

N

∑
st=1

σ2
(l+1)

2
−

(yt − x′tβ
(l+1)
st )2

2

Pλl (St = st |YT = y⃗T ) = 0

⇔
T

∑
t=m+1

N

∑
st=1

Pλl (St = st |YT = y⃗T )
σ2
(l+1)

2
=

T

∑
t=m+1

N

∑
st=1

(yt − x′tβ
(l+1)
st )2

2
Pλl (St = st |YT = y⃗T )

⇔ (T −m)
σ2
(l+1)

2
=

T

∑
t=m+1

N

∑
st=1

(yt − x′tβ
(l+1)
st )2

2
Pλl (St = st |YT = y⃗T )

⇔ σ
2
(l+1) =

T

∑
t=m+1

N

∑
st=1

(yt − x′tβ
(l+1)
st )2

(T −m)
Pλl (St = st |YT = y⃗T )

⇔ σ
2
(l+1) =

T

∑
t=m+1

N

∑
st=1

(yt
√

Pλl (St = st |YT = y⃗T )− x′t
√

Pλl (St = st |YT = y⃗T )β
(l+1)
st )2

(T −m)
.

Conveniently we can estimate in this specific case all parameters via an OLS Regression. Let us

assume we have the parameter vector from the previous iteration λl (to start the algorithm one starts

with a random λ0), we first define:

y∗t = yt

√
Pλl (St = j|YT = y⃗T ) and x∗t = xt

√
Pλl (St = j|YT = y⃗T ).

Then we regress y∗t on x∗t . Thus ∑
T
t=m+1(y

∗
t −x′∗t β j)

2 should be minimized, which leads to the following

FOC that characterises β
(l+1)
j :

T

∑
t=m+1

2(y∗t − (x∗t )
′
β
(l+1)
j )(−1)x∗t = 0

⇔
T

∑
t=m+1

(yt

√
Pλl (St = j|YT = y⃗T )− x′t

√
Pλl (St = j|YT = y⃗T )β

(l+1)
j )xt

√
Pλl (St = j|YT = y⃗T ) = 0

⇔
T

∑
t=m+1

(yt − x′tβ
(l+1)
j )xtPλl (St = j|YT = y⃗T ) = 0.

Which is equivalent to conditon (44). This is now done N times to estimate β
(l+1)
1 , ...,β

(l+1)
N . By

squaring and summing the residuals we get our estimate of σ2:

σ
2
(l+1) =

1

(T −m)

N

∑
j=1

T

∑
t=m+1

(y∗t − (x∗t )
′
β
(l+1)
j )2.

Summarizing one can say, that we achieve our estimate for the β j of the next iteration by solving the

following optimization problem:

argmin
β j

T

∑
t=m+1

(y∗t − x′∗t β j)
2. (46)

And then calculate our estimate of the σ2 of the next iteration with:

σ
2 =

1

(T −m)

N

∑
j=1

T

∑
t=m+1

(y∗t − (x∗t )
′
β j)

2. (47)
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Therefore, we have now a specific algorithm for estimating the parameters of a Markov-Switching

AR model, where all coefficients switch and the error term variance does not switch. This is the

case presented in Hamilton (1990, page 56-58). Sadly Hamilton does not show how to apply the EM

algorithm to broader structures of AR models, therefore the following examples are the application

of the EM algorithm to broader defined AR processes. To the best of the authors knowledge this

presentation of applying the EM algorithm to broader defined specific AR processes is novel.

4.4.4 Example 1: Non-Switching Intercept

From the previous derivations, we know that the equations (38), (39), and (40) hold. The five appli-

cations of the EM algorithm that we now specifically present are within the class of models for which

these three equations were originally derived, i.e. an autoregressive process with a maximum lag or-

der. As opposed to Example 0 we vary the parameters influenced by the underlying Markov-Chain.

It is important to emphasize that all models presented are still Markov-Switching AR(m) models with

gaussian white noise that fulfill the assumptions made in section 4.1, i.e that fulfill (11), (12), (16)

and (17). Assumption (11) is fulfilled because the parameters that describe the generation of Yt are

only directly influenced by the current state of the Markov-Chain st and not by earlier states of the

Markov-Chain st−1,st−2, ..., as described in 4.1.

With that general short discussion out of the way we now turn to Example 1. This time we assume that

the coefficients switch, while the intercept and the error term variance do not switch. The assumed

process therefore has the following form:

Yt = c+φ1,stYt−1 + ...+φm,stYt−m +Ut ; where Ut
i.i.d.∼ N(0,σ2).

We could alternatively write:

Yt = c+X ′t φst +Ut with Xt =


Yt−1

Yt−2

...

Yt−m

 , φst =


φ1,st

φ2,st

...

φm,st

 and βst =



c

φ1,st

φ2,st

...

φm,st


.

We start again with the conditional log-likelihood, which has the following form:

ln( fYt |Zt ;α(yt |zt)) = ln(
1

√
2πσ

)−
(yt − c− x′tφst )

2

2σ2 .

Now we approach this very similar to how we approached Example 0, we take the derivative in α ,

only that now there is a switching and a non-switching part in β , we have to take the derivative in

each. It holds that:

∂ ln( fYt |Zt ;α(yt |zt))

∂c
=

(yt − c− x′tφst )

σ2 ∀st ∈ {1, ...,N}.
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We substitute our result in (39):

T

∑
t=m+1

N

∑
st=1
· · ·

N

∑
st−m=1

(yt − c(l+1)− x′tφ
(l+1)
st )

σ2
(l+1)

Pλl (St = st , ...,St−m = st−m|YT = y⃗T ) = 0

⇔
T

∑
t=m+1

N

∑
st=1

(yt − c(l+1)− x′tφ
(l+1)
st )

σ2
(l+1)

Pλl (St = st |YT = y⃗T ) = 0

⇔
T

∑
t=m+1

N

∑
st=1

(yt − c(l+1)− x′tφ
(l+1)
st )Pλl (St = st |YT = y⃗T ) = 0

⇔
T

∑
t=m+1

N

∑
st=1

(yt − x′tφ
(l+1)
st )Pλl (St = st |YT = y⃗T ) =

T

∑
t=m+1

N

∑
st=1

c(l+1)Pλl (St = st |YT = y⃗T )

⇔
T

∑
t=m+1

N

∑
st=1

(yt − x′tφ
(l+1)
st )Pλl (St = st |YT = y⃗T ) = (T −m)c(l+1)

⇔ c(l+1) =
1

(T −m)

T

∑
t=m+1

N

∑
st=1

(yt − x′tφ
(l+1)
st )Pλl (St = st |YT = y⃗T ).

The last result:

c(l+1) =
1

(T −m)

T

∑
t=m+1

N

∑
j=1

(yt − x′tφ
(l+1)
st )Pλl (St = j|YT = y⃗T ) (48)

can be understood as a constraint. Next, we take the derivative in φ j:

∂ ln( fYt |Zt ;α(yt |zt))

∂φ j
=

(yt − c− x′tφ j)xt

σ2 , if St = j, else 0.

We insert in (39):

T

∑
t=m+1

N

∑
st=1
· · ·

N

∑
st−m=1

∂ ln( fYt |Zt ;α(yt |zt))

∂φ j

∣∣∣
α=α(l+1)

Pλl (St = st , ...,St−m = st−m|YT = y⃗T ) = 0

⇔
T

∑
t=m+1

(yt − c(l+1)− x′tφ
(l+1)
j )xt

σ2
(l+1)

Pλl (St = j|YT = y⃗T ) = 0

⇔
T

∑
t=m+1

(yt − c(l+1)− x′tφ
(l+1)
j )xtPλl (St = j|YT = y⃗T ) = 0.

This is equivalent to the FOC of the following optimization problem:

argmin
φ j

T

∑
t=m+1

(
(yt − c)

√
Pλl (St = j|YT = y⃗T )− x′t

√
Pλl (St = j|YT = y⃗T )φ j

)2
. (49)

Finally, it remains to differentiate with respect to σ2. In this special case, the differentiation proceeds

exactly as in Hamilton’s example, since σ2 still does not switch. Thus, we have:

σ
2
(l+1) =

1

(T −M)

T

∑
t=m+1

N

∑
j=1

(yt − c(l+1)− x′tφ
(l+1)
j )2Pλl (St = j|YT = y⃗T ).

It thus becomes apparent that σ2 does not affect the conditions for c and φ j, while these in turn do

influence the condition for σ2. Accordingly, as in Hamilton’s example, one can first solve for β j

before determining σ2. However, what changed is that finding β j is no longer a simple optimization

step, since two conditions must now be satisfied simultaneously—namely, those for φ j and c. It turns
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out that simultaneously satisfying both conditions is equivalent to optimizing expression (49) subject

to the constraint given by (48). We therefore need to solve the following optimisation problem for β j:

argmin
φ j

T

∑
t=m+1

(
(yt − c)

√
Pλl (St = j|YT = y⃗T )− x′t

√
Pλl (St = j|YT = y⃗T )φ j

)2
s.t.

c =
1

(T −m)

T

∑
t=m+1

N

∑
j=1

(yt − x′tφ j)Pλl (St = j|YT = y⃗T ).

Now we can use this β j, similarly to how we know it from Hamilton and get:

σ
2 =

1

(T −M)

T

∑
t=m+1

N

∑
j=1

(yt − c− x′tφ j)
2Pλl (St = j|YT = y⃗T ).

This concludes our α vector for the next iteration.

4.4.5 Example 2: Switching Intercept and Non-Switching Coefficients

This time, we reverse the roles; instead of letting the coefficients switch, now only the intercept

switches. Therefore, the assumed process would have the following form:

Yt = cst +φ1Yt−1 + ...+φmYt−m +Ut ; where Ut
i.i.d.∼ N(0,σ2),

we could alternatively write:

Yt = cst +X ′t φ +Ut with Xt =


Yt−1

Yt−2

...

Yt−m

 , φst =


φ1

φ2

...

φm

 and βst =



cst

φ1

φ2

...

φm


.

In this case, we differentiate with respect to φ , c j, and σ2. It is important to note that the error term

variance still does not switch. For this setup, we can write:

ln( fYt |Zt ;α(yt |zt)) = ln(
1

√
2πσ

)−
(yt − cst − x′tφ)

2

2σ2 .

First we differentiate with respect to φ and get:

∂ ln( fYt |Zt ;α(yt |zt))

∂φ
=

(yt − cst − x′tφ)xt

σ2 ∀st ∈ {1, ...,N}.
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We insert in (39), this leads us to:

T

∑
t=m+1

N

∑
st=1
· · ·

N

∑
st−m=1

(yt − c(l+1)
st − x′tφ

(l+1))xt

σ
2
(l+1)

Pλl (St = st , ...,St−m = st−m|YT = y⃗T ) = 0

⇔
T

∑
t=m+1

N

∑
st=1

(yt − c(l+1)
st − x′tφ

(l+1))xt

σ2
(l+1)

Pλl (St = st |YT = y⃗T ) = 0

⇔
T

∑
t=m+1

N

∑
st=1

(yt − c(l+1)
st − x′tφ

(l+1))xtPλl (St = st |YT = y⃗T ) = 0

⇔
T

∑
t=m+1

N

∑
st=1

(yt − c(l+1)
st )xtPλl (St = st |YT = y⃗T ) =

T

∑
t=m+1

N

∑
st=1

x′tφ
(l+1)xtPλl (St = st |YT = y⃗T )

⇔
T

∑
t=m+1

N

∑
st=1

(yt − c(l+1)
st )xtPλl (St = st |YT = y⃗T ) =

T

∑
t=m+1

N

∑
st=1

Pλl (St = st |YT = y⃗T )xtx′tφ
(l+1)

⇔
T

∑
t=m+1

N

∑
st=1

(yt − c(l+1)
st )xtPλl (St = st |YT = y⃗T ) =

(
T

∑
t=m+1

N

∑
st=1

Pλl (St = st |YT = y⃗T )xtx′t

)
φ
(l+1)

⇔ φ
(l+1) =

(
T

∑
t=m+1

xtx′t

)−1 T

∑
t=m+1

N

∑
st=1

(yt − c(l+1)
st )xtPλl (St = st |YT = y⃗T ).

Next we differentiate with respect to c j:

∂ ln( fYt |Zt ;α(yt |zt))

∂c j
=

(yt − c j− x′tφ)

σ2 if St = j, else 0.

Similarily we insert the result in (39):

T

∑
t=m+1

N

∑
st=1
· · ·

N

∑
st−m=1

∂ ln( fYt |Zt ;α(yt |zt))

∂c j

∣∣∣
α=α(l+1)

Pλl (St = st , ...,St−m = st−m|YT = y⃗T ) = 0

⇔
T

∑
t=m+1

(yt − c(l+1)
j − x′tφ

(l+1))

σ2
(l+1)

Pλl (St = j|YT = y⃗T ) = 0

⇔
T

∑
t=m+1

(yt − c(l+1)
j − x′tφ

(l+1))Pλl (St = j|YT = y⃗T ) = 0.

It should be noted that the last equation is the FOC of the following optimization problem:

argmin
c j

T

∑
t=m+1

(
(yt − x′tφ)

√
Pλl (St = j|YT = y⃗T )− c j

√
Pλl (St = j|YT = y⃗T )

)2
. (50)

For σ2, the same condition applies as already formulated by Hamilton, because σ2 again does not

switch. Thus, we are in a very similar situation as in the previous example, because the conditions

resulting from the derivative with respect to c j, as well as the condition resulting from the derivative

with respect to φ , must be satisfied simultaneously and affect the condition for σ2, whereas σ2 does

not affect the former conditions. Therefore, one can first satisfy the first two conditions for all j in

order to obtain β j for all j, and then determine σ2 for the next iteration. Furthermore, it follows again

that β j, for a given j, can be found by solving an optimization problem with an equality constraint. In
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order to obtain β j, the following optimization problem must be solved:

argmin
c j

T

∑
t=m+1

(
(yt − x′tφ)

√
Pλl (St = j|YT = y⃗T )− c j

√
Pλl (St = j|YT = y⃗T )

)2
s.t.

φ =

(
T

∑
t=m+1

xtx′t

)−1 T

∑
t=m+1

N

∑
j=1

(yt − c j)xtPλl (St = j|YT = y⃗T ).

As usual we compute:

σ
2 =

1

(T −M)

T

∑
t=m+1

N

∑
j=1

(yt − c− x′tφ j)
2Pλl (St = j|YT = y⃗T ),

and with that we get out α vector for the next iteration.

4.4.6 Example 3: All Parameters Switch

As a third example, we now consider the case in which all parameters are allowed to switch. That is,

we now allow not only the coefficients and the intercept to switch, but also the variance of the error

term. It is important to note that in setups discussed earlier one could have made stronger assumptions,

namely it would have been easier to assume in Example 0 to Example 2, that St was independent of Uτ

for all t and τ . Instead we made the weaker assumptions (16) and (17) so that we can now introduce

models where the error term variance is allowed to switch, that wouldn’t have been possible with

the stronger set of assumptions. That is the reason why all derivations earlier were done with this

weaker set of assumptions. That said, we want to point out that we still make the same assumptions

as in section 4.1, this is possible due to the weaker set of assumptions, a stronger set of assumptions

wouldn’t allow for models like Example 3 and Example 5. Additionally, it should be noted that, in

terms of notation, we now again include a 1 as the first element of Xt to represent the intercept. This

leads to the following process formulation:

yt = cst +φ1,stYt−1 + ...+φm,stYt−m +Ut ; where Ut ∼ N(0,σ2
st
),

we could alternatively write:

Yt = X ′t βst +Ut with Xt =



1

Yt−1

Yt−2

...

Yt−m


and βst =



cst

φ1,st

φ2,st

...

φm,st


.

As usual we start with the conditional log-likelihood:

ln( fYt |Zt ;α(yt |zt)) = ln(
1

√
2πσst

)−
(yt − xtβst )

2

2σ2
st

.

We now need to take the derivative once with respect to β j and once with respect to σ2
j for a given j.

If we first take the derivative with respect to β j, we obtain:

∂ ln( fYt |Zt ;α(yt |zt))

∂β j
=

(yt − x′tβ j)xt

σ2
j

if St = j, else 0.
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We now substitute this into (39) and obtain:

T

∑
t=m+1

N

∑
st=1
· · ·

N

∑
st−m=1

∂ ln( fYt |Zt ;α(yt |zt))

∂β j

∣∣∣
α=α(l+1)

Pλl (St = st , ...,St−m = st−m|YT = y⃗T ) = 0

⇔
T

∑
t=m+1

(yt − x′tβ
(l+1)
j )xt

σ2
j,(l+1)

Pλl (St = j|YT = y⃗T ) = 0.

We again observe that this corresponds to the FOC of an optimization problem, namely the following

optimization problem:

argmin
β j

T

∑
t=m+1

 yt

σ j

√
Pλl (St = j|YT = y⃗T )−

x′t
σ j

√
Pλl (St = j|YT = y⃗T )β j

2

.

Next we take the derivative with respect to σ
−2
j and get:

∂ ln( fYt |Zt ;α(yt |zt))

∂σ
−2
j

=
σ2

j

2
−

(yt − x′tβ j)
2

2
if St = j, else 0.

We substitute the result into (39), this leads to:

T

∑
t=m+1

N

∑
st=1
· · ·

N

∑
st−m=1

∂ ln( fYt |Zt ;α(yt |zt))

∂σ
−2
j

∣∣∣
α=α(l+1)

Pλl (St = st , ...,St−m = st−m|YT = y⃗T ) = 0

⇔
T

∑
t=m+1

σ2
j,(l+1)

2
−

(yt − x′tβ
(l+1)
j )2

2

Pλl (St = j|YT = y⃗T ) = 0

⇔
T

∑
t=m+1

(σ2
j,(l+1)− (yt − x′tβ

(l+1)
j )2)Pλl (St = j|YT = y⃗T ) = 0

⇔
T

∑
t=m+1

σ
2
j,(l+1)Pλl (St = j|YT = y⃗T ) =

T

∑
t=m+1

(yt − x′tβ
(l+1)
j )2Pλl (St = j|YT = y⃗T )

⇔ σ
2
j,(l+1)

T

∑
t=m+1

Pλl (St = j|YT = y⃗T ) =
T

∑
t=m+1

(yt − x′tβ
(l+1)
j )2Pλl (St = j|YT = y⃗T )

⇔ σ
2
j,(l+1) =

∑
T
t=m+1(yt − x′tβ

(l+1)
j )2Pλl (St = j|YT = y⃗T )

∑
T
t=m+1 Pλl (St = j|YT = y⃗T )

.

As a result, since σ j now affects the condition for β j and vice versa, we once again arrive at a con-

strained optimization problem, which leads to α of the next iteration. The constrained optimization

problem is given by:

argmin
β j

T

∑
t=m+1

 yt

σ j

√
Pλl (St = j|YT = y⃗T )−

x′t
σ j

√
Pλl (St = j|YT = y⃗T )β j

2

s.t.

σ j =

√√√√ ∑
T
t=m+1(yt − x′tβ j)

2Pλl (St = j|YT = y⃗T )

∑
T
t=m+1 Pλl (St = j|YT = y⃗T )

.

4.4.7 Example 4: Arbitrary Subset-Switching of (c,φ) and Non-Switching σ2

The three previous examples are essentially special cases of the two model formulations that follow.

Therefore, the next two examples represent the most general forms of Markov-Switching AR(m) mod-

els that will appear in this paper. The model class introduced next assumes that σ2 does not switch,
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and that an arbitrary subset of β is allowed to switch. Accordingly, we divide the parameter vector

β into the switching components, denoted by β S, and the non-switching components, denoted by β F .

The underlying process is therefore formulated as follows:

Yt = (XF
t )′β F +(XS

t )
′
β

S
st
+Ut ; where Ut

i.i.d.∼ N(0,σ2) and Xt =



1

Yt−1

Yt−2

...

Yt−m


.

Thereby XF
t and XS

t are defined such that their elements do not overlap and that the elements of both

vectors together are the elements of Xt , to put it more formally: Let IF , IS ⊂ {1, . . . ,m+1} be disjoint

index sets such that IF ∩ IS = /0 and IF ∪ IS = {1, . . . ,m+1}, where m+1 is the number of coefficients

plus intercept. Then we define

XF
t = ((Xt)i)i∈IF , XS

t = ((Xt)i)i∈IS .

Again we start with the conditional log-likelihood:

ln( fYt |Zt ;α(yt |zt)) = ln(
1

√
2πσ

)−
(yt − (xS

t )
′β S

st
− (xF

t )
′β F)2

2σ2 .

Accordingly, for this model class, we need to take the derivative with respect to σ2, β S
j , and β F . We

will start with β S
j :

∂ ln( fYt |Zt ;α(yt |zt))

∂β S
j

=
(yt − (xS

t )
′β S

j − (xF
t )
′β F)xS

t

σ2 if St = j, else 0.

We can now substitute this into (39) and obtain:

T

∑
t=m+1

N

∑
st=1
· · ·

N

∑
st−m=1

∂ ln( fYt |Zt ;α(yt |zt))

∂β S
j

∣∣∣
α=α(l+1)

Pλl (St = st , ...,St−m = st−m|YT = y⃗T ) = 0

⇔
T

∑
t=m+1

(yt − (xS
t )
′
β

S
j,(l+1)− (xF

t )
′
β

F
(l+1))x

S
t Pλl (St = j|YT = y⃗T ) = 0.

This, in turn, corresponds to the FOC of the following optimization problem:

argmin
β S

j

T

∑
t=m+1

(
(yt − (xF

t )
′
β

F)
√

Pλl (St = j|YT = y⃗T )− (xS
t )
′
√

Pλl (St = j|YT = y⃗T )β
S
j

)2
.

Next, if we take the derivative with respect to β F , we obtain:

∂ ln( fYt |Zt ;α(yt |zt))

∂β F =
(yt − (xS

t )
′β S

j − (xF
t )
′β F)xF

t

σ2 ∀st ∈ {1, ...,N}.
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We substitute this into (39) and obtain:

T

∑
t=m+1

N

∑
st=1
· · ·

N

∑
st−m=1

(yt − (xS
t )
′β S

st ,(l+1)− (xF
t )
′β F

(l+1))x
F
t

σ2
(l+1)

Pλl (St = st , ...,St−m = st−m|YT = y⃗T ) = 0

⇔
T

∑
t=m+1

N

∑
st=1

(yt − (xS
t )
′
β

S
st ,(l+1)− (xF

t )
′
β

F
(l+1))x

F
t Pλl (St = st |YT = y⃗T ) = 0

⇔
T

∑
t=m+1

N

∑
st=1

(yt − (xS
t )
′
β

S
st ,(l+1))x

F
t Pλl (St = st |YT = y⃗T ) =

T

∑
t=m+1

N

∑
st=1

(xF
t )
′
β

F
(l+1)x

F
t Pλl (St = st |YT = y⃗T )

⇔
T

∑
t=m+1

N

∑
st=1

(yt − (xS
t )
′
β

S
st ,(l+1))x

F
t Pλl (St = st |YT = y⃗T ) =

T

∑
t=m+1

(xF
t )
′
β

F
(l+1)x

F
t

⇔
T

∑
t=m+1

N

∑
st=1

(yt − (xS
t )
′
β

S
st ,(l+1))x

F
t Pλl (St = st |YT = y⃗T ) =

T

∑
t=m+1

xF
t (x

F
t )
′
β

F
(l+1)

⇔
T

∑
t=m+1

N

∑
st=1

(yt − (xS
t )
′
β

S
st ,(l+1))x

F
t Pλl (st = st |YT = y⃗T ) =

(
T

∑
t=m+1

xF
t (x

F
t )
′

)
β

F
(l+1)

⇔ β
F
(l+1) =

(
T

∑
t=m+1

xF
t (x

F
t )
′

)−1( T

∑
t=m+1

N

∑
st=1

(yt − (xS
t )
′
β

S
st ,(l+1))x

F
t Pλl (St = st |YT = y⃗T )

)
.

For this generalized model class, where arbitrary parameters can switch except for the error term

variance, which can not switch, we thus obtain the following constrained optimization problem to

determine β F and β S
j for all j.

argmin
β S

j

T

∑
t=m+1

(
(yt − (xF

t )
′
β

F)
√

Pλl (St = j|YT = y⃗T )− (xS
t )
′
√

Pλl (St = j|YT = y⃗T )β
S
j

)2
s.t.

β
F =

(
T

∑
t=m+1

xF
t (x

F
t )
′

)−1( T

∑
t=m+1

N

∑
j=1

(yt − (xS
t )
′
β

S
j )x

F
t Pλl (St = j|YT = y⃗T )

)
.

We then calculate, as usual:

σ
2 =

1

(T −M)

T

∑
t=m+1

N

∑
j=1

(yt − x′tβ j)
2Pλl (St = j|YT = y⃗T ).

and thus obtain our new α vector for the next iteration.

4.4.8 Example 5: Arbitrary Subset-Switching of (c,φ) and Switching σ2

With Example 5, we complete the generalization of the application of the EM algorithm to under-

lying AR(m) models, as Example 4 and Example 5 together allow for selecting any arbitrary subset

of parameters in an AR(m) context for switching. In this final example, we assume the following

underlying process:

Yt = (XF
t )′β F +(XS

t )
′
β

S
st
+Ut ; where Ut ∼ N(0,σ2

st
) and Xt =



1

Yt−1

Yt−2

...

Yt−m


.
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Thereby, XF
t and XS

t are defined such that their elements do not overlap and that the elements of both

vectors together are the elements of Xt , to put it more formally: Let IF , IS ⊂ {1, . . . ,m+1} be disjoint

index sets such that IF ∩ IS = /0 and IF ∪ IS = {1, . . . ,m+1}, where m+1 is the number of coefficients

plus intercept. Then we define

XF
t = ((Xt)i)i∈IF , XS

t = ((Xt)i)i∈IS .

Again, we start with the conditional log-liklihood, which would be in this case:

ln( fYt |Zt ;α(yt |zt)) = ln

 1
√

2πσst

− (yt − (xS
t )
′β S

st
− (xF

t )
′β F)2

2σ2
st

.

Accordingly, we need to take the derivative with respect to σ2
j , β S

j , and β F . We begin with the

derivative with respect to β S
j .

∂ ln( fYt |Zt ;α(yt |zt))

∂β S
j

=
(yt − (xS

t )
′β S

j − (xF
t )
′β F)xS

t

σ2
j

if St = j, else 0.

We now substitute this into (39) and obtain:

T

∑
t=m+1

N

∑
st=1
· · ·

N

∑
st−m=1

∂ ln( fYt |Zt ;α(yt |zt))

∂β S
j

∣∣∣
α=α(l+1)

Pλl (St = st , ...,St−m = st−m|YT = y⃗T ) = 0

⇔
T

∑
t=m+1

(yt − (xS
t )
′β S

j,(l+1)− (xF
t )
′β F

(l+1))x
S
t

σ2
j,(l+1)

Pλl (St = j|YT = y⃗T ) = 0.

This, in turn, corresponds to the FOC of the following optimization problem:

argmin
β S

j

T

∑
t=m+1

(yt − (xF
t )
′
β

F)

√
Pλl (St = j|YT = y⃗T )

σ j
− (xS

t )
′

√
Pλl (St = j|YT = y⃗T )

σ j
β

S
j

2

.

We now move on to the next step and take the derivative with respect to β F , obtaining:

∂ ln( fYt |Zt ;α(yt |zt))

∂β F =
(yt − (xS

t )
′β S

st
− (xF

t )
′β F)xF

t

σ2
st

∀st ∈ {1, ...,N}.
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We then substitute this into (39) and obtain:

T

∑
t=m+1

N

∑
st=1
· · ·

N

∑
st−m=1

(yt − (xS
t )
′β S

st ,(l+1)− (xF
t )
′β F

(l+1))x
F
t

σ2
st ,(l+1)

Pλl (St = st , ...,St−m = st−m|YT = y⃗T ) = 0

⇔
T

∑
t=m+1

N

∑
st=1

(yt − (xS
t )
′β S

st ,(l+1)− (xF
t )
′β F

(l+1))x
F
t

σ2
st ,(l+1)

Pλl (St = st |YT = y⃗T ) = 0

⇔
T

∑
t=m+1

N

∑
st=1

(yt − (xS
t )
′
β

S
st ,(l+1))x

F
t

Pλl (St = st |YT = y⃗T )

σ2
st ,(l+1)

=
T

∑
t=m+1

N

∑
st=1

(xF
t )
′
β

F
(l+1)x

F
t

Pλl (St = st |YT = y⃗T )

σ2
st ,(l+1)

⇔
T

∑
t=m+1

N

∑
st=1

(yt − (xS
t )
′
β

S
st ,(l+1))x

F
t

Pλl (St = st |YT = y⃗T )

σ2
st ,(l+1)

=
T

∑
t=m+1

(xF
t )
′
β

F
(l+1)x

F
t

N

∑
st=1

Pλl (St = st |YT = y⃗T )

σ2
st ,(l+1)

⇔
T

∑
t=m+1

N

∑
st=1

(yt − (xS
t )
′
β

S
st ,(l+1))x

F
t

Pλl (St = st |YT = y⃗T )

σ2
st ,(l+1)

=
T

∑
t=m+1

xF
t (x

F
t )
′
β

F
(l+1)

N

∑
st=1

Pλl (St = st |YT = y⃗T )

σ2
st ,(l+1)

⇔
T

∑
t=m+1

N

∑
st=1

(yt − (xS
t )
′
β

S
st ,(l+1))x

F
t

Pλl (St = st |YT = y⃗T )

σ2
st ,(l+1)

=
T

∑
t=m+1

xF
t (x

F
t )
′

N

∑
st=1

Pλl (St = st |YT = y⃗T )

σ2
st ,(l+1)

β
F
(l+1)

⇔
T

∑
t=m+1

N

∑
st=1

(yt − (xS
t )
′
β

S
st ,(l+1))x

F
t

Pλl (St = st |YT = y⃗T )

σ2
st ,(l+1)

=

 T

∑
t=m+1

xF
t (x

F
t )
′

N

∑
st=1

Pλl (St = st |YT = y⃗T )

σ2
st ,(l+1)

β
F
(l+1)

⇔ β
F
(l+1) =

 T

∑
t=m+1

xF
t (x

F
t )
′

N

∑
st=1

Pλl (St = st |YT = y⃗T )

σ2
st ,(l+1)

−1 T

∑
t=m+1

N

∑
st=1

(yt − (xS
t )
′
β

S
st ,(l+1))x

F
t

Pλl (St = st |YT = y⃗T )

σ2
st ,(l+1)

 .

As a third step, we now take the derivative with respect to σ
−2
j and obtain:

∂ ln( fYt |Zt ;α(yt |zt))

∂σ
−2
j

=
σ2

j

2
−

(yt − (xS
t )
′β S

j − (xF
t )
′β F)2

2
if St = j else 0.

We now substitute this into (39) and obtain:

T

∑
t=m+1

N

∑
st=1
· · ·

N

∑
st−m=1

∂ ln( fYt |Zt ;α(yt |zt))

∂σ
−2
j

∣∣∣
α=α(l+1)

Pλl (St = st , ...,St−m = st−m|YT = y⃗T ) = 0

⇔
T

∑
t=m+1

σ2
j,(l+1)

2
−

(yt − (xS
t )
′β S

j,(l+1)− (xF
t )
′β F

(l+1))
2

2

Pλl (St = j|YT = y⃗T ) = 0

⇔
T

∑
t=m+1

σ
2
j,(l+1)Pλl (St = j|YT = y⃗T ) =

T

∑
t=m+1

(yt − (xS
t )
′
β

S
j,(l+1)− (xF

t )
′
β

F
(l+1))

2Pλl (St = j|YT = y⃗T )

⇔ σ
2
j,(l+1)

T

∑
t=m+1

Pλl (St = j|YT = y⃗T ) =
T

∑
t=m+1

(yt − (xS
t )
′
β

S
j,st
− (xF

t )
′
β

F
(l+1))

2Pλl (St = j|YT = y⃗T )

⇔ σ
2
j,(l+1) =

∑
T
t=m+1(yt − (xS

t )
′β S

j,st
− (xF

t )
′β F

(l+1))
2Pλl (St = j|YT = y⃗T )

∑
T
t=m+1 Pλl (St = j|YT = y⃗T )

.

We can now combine these three results into a single optimization problem, which leads us to the next

α . This is necessary because, once again, all three conditions must be satisfied simultaneously and

cannot be implemented sequentially, as each of the three variables plays a role in the different condi-
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tions. We thus obtain another constrained optimization problem, but this time under two constraints:

argmin
β S

j

T

∑
t=m+1

(yt − (xF
t )
′
β

F)

√
Pλl (St = j|YT = y⃗T )

σ j
− (xS

t )
′

√
Pλl (St = j|YT = y⃗T )

σ j
β

S
j

2

s.t.

β
F =

 T

∑
t=m+1

xF
t (x

F
t )
′

N

∑
j=1

Pλl (St = j|YT = y⃗T )

σ2
j

−1 T

∑
t=m+1

N

∑
j=1

(yt − (xS
t )
′
β

S
j )x

F
t

Pλl (St = j|YT = y⃗T )

σ2
j


σ j =

√√√√ ∑
T
t=m+1(yt − (xS

t )
′β S

j − (xF
t )
′β F)2Pλl (St = j|YT = y⃗T )

∑
T
t=m+1 Pλl (st = j|YT = y⃗T )

.

4.5 Forecasting with Markov-Switching Models

Next, we would like to turn to the topic of forecasts using Markov-Switching models. We recall that

the conditional density is given by fYt |St ,Yt−1;α(yt | j, y⃗t−1). If we now have y⃗t and st+1, we could, for a

simple AR(1) model, state:

Yt+1 = cst+1 +φst+1Yt +Ut+1,

where we have Eα(Yt+1|St+1 = j,Yt = y⃗t) = c j +φ jyt . Furthermore, we can show the following for

an m-step ahead forecast:

Eθ (Yt+m|Yt = y⃗t) =
∫

yt+m fYt+m|Yt ;θ (yt+m |⃗yt)dyt+m

=
∫

yt+m

(
N

∑
j=1

fYt+m,St+m|YT ;θ (yt+m, j|⃗yt)

)
dyt+m

=
∫

yt+m

(
N

∑
j=1

fYt+1|St+m,Yt ;α(yt+m| j, y⃗t)Pθ (St+m = j|Yt = y⃗t)

)
dyt+m

=
N

∑
j=1

Pθ (St+m = j|Yt = y⃗t)
∫

yt+m fYt+m|St+m,Yt ;α(yt+m| j, y⃗t)dyt+m

=
N

∑
j=1

Pθ (St+m = j|Yt = y⃗t)Eα(Yt+m|St+m = j,Yt = y⃗t).

One could thus say that the forecasts for yt+m correspond to a weighted average of the expected values

given the regime, with the regime probabilities as the weights. To summarize this notation, we can say

that we collect the Eα(Yt+m|St+m = j,Yt = y⃗t) in h′t, so that we can write Eθ (Yt+m|Yt = y⃗t) = h′tζ̂t+m|t ,

this derivation closely followed Hamilton (1994, page 694-695).

4.6 Regime Forecasting with Markov-Switching Models

The probability that the Markov-Chain will be in a particular state in the future can be considered as

Eθ (ζt+m|Yt = y⃗t). Based on (14), this is given by:

Eθ (ζt+m|Yt = y⃗t) = (Π′)mEθ (ζt |Yt = y⃗t), (51)

or alternatively:

ζ̂t+m|t = (Π′)mζ̂t|t . (52)
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5 MSwM - The current R standard

Due to the practical relevance of Markov-Switching AR models there are already existing packages

for estimating them in R. Thereby the package MSwM2 is one of the most popular packages. Gen-

erally speaking, MSwM should be the first package one finds when searching for R packages re-

garding Markov-Switching AR models and is often discussed in blog posts online, see for example

Lee (2022). One of the advantages of this package is that it allows for specifying which parameters

should switch and which should not, via a simple TRUE/FALSE vector. Furthermore, the source code

for the package is publicly available via GitHub3, here we can find the functions ”.MSM.em” and

”.MSM.lm.maximEM”, which are essential for the implementation of the EM algorithm for MSwM,

see Sanchez-Espigares & Lopez-Moreno (2021, lines 1154-1170) and Sanchez-Espigares & Lopez-

Moreno (2021, lines 1216-1293). As one can observe from this code, the MSwM package utilizes a

”stacked-matrix” approach. The following example provides a more detailed explanation of the trans-

formation used. Let us assume we have an AR model with two lags Yt−1,Yt−2, where the coefficient

of Yt−1 switches and the coefficient of Yt−2 is fixed. Furthermore, there shall only be two underlying

regimes. The model would then look like this:

Yt = β1,stYt−1 +β2Yt−2 +Ut ,

the MSwM package would then transform, for four observations (yt ,yt−1,yt−2,yt−4), the data/obser-

vations such that we get the following matrices:

ỹ =


yt−1

yt−1

yt

yt

 , x̃ =


yt−2 0 yt−3

0 yt−2 yt−3

yt−1 0 yt−2

0 yt−1 yt−2

 , w̃ =


pt−1,1

pt−1,2

pt,1

pt,2

 .

Thereby w̃ is the vector of the smoothed inference regarding the chance of the Markov-Chain being in

a particular state at a specific point in time. If now ỹ is regressed on x̃, with w̃ used as weights, then

each column corresponds to one coefficient estimate, column one would correspond to β1,1, the second

column would correspond to β1,2 and the third column would correspond to β2. As becomes clear from

this example, this algorithm does not follow the optimisation problems we propose in Example 1 to

Example 5, to the best of the author’s knowledge there is no proof of showing any equivalence. This

fact brings us to our implementation of the EM algorithm in R, here we implement an approximation

of the EM algorithm that strongly relies on our derivations in section 4.4.4 to section 4.4.8.

6 Building MSARM - Implementation Considerations

MSARM is the R package we developed utilizing the theoretical results presented in the previous sec-

tions, it can be installed with the command devtools::install github(”jmuelleo/MSARM”). MSARM

2Version 1.5, Sanchez-Espigares & Lopez-Moreno, 2021, DOI: 10.32614/CRAN.package.MSwM
3https://github.com/cran/MSwM/blob/master/R/2MSM.r

25



utilizes Example 3, Example 4, and Example 5 for estimating the parameters of any potential Markov-

Switching AR process. One important point to note is that MSARM differs from the earlier presented

theory in only one significant detail. Instead of solving a constraint optimisation problem, as the theory

indicates, MSARM first computes the values of the constraint variables using the estimates from the

previous iteration step and then computes the estimates of the parameters of the underlying process for

the current iteration by inserting the constraint-variables into the originally constrained optimisation

problem. Earlier attempts at developing MSARM included deriving the Gradient for the different se-

tups and implementing gradient descent methods; this and any other form of constrained optimization

led to higher computational demands without yielding better results. Therefore, we decided to uti-

lize the described approximation. Besides this, the theory has been implemented in MSARM exactly

as presented earlier. Summarizing we can say that MSARM allows its user to estimate Markov-

Switching AR models. Any finite lag-order or number of underlying regimes can be chosen, details to

the functions of MSARM can be found in the following code boxes and their descriptions.

6.1 MSARM.fit

MSARM.fit allows its user to estimate Markov-Switching AR models. Thereby the user only has to

support MSARM.fit with the time series that is to be analyzed, the lag order of the assumed underlying

AR process, as well as the number of assumed regimes and a ”Switching”-vector, which indicates for

all parameters (intercept, coefficients and error term variance), whether they are supposed to switch

or not. It should be noted that if standard settings are used MSARM.fit estimates the parameters five

times, each time starting the optimisation with a different random starting point. Utilizing set.seed be-

fore running MSARM.fit allows for full reproducibility of the results. The implemented performance

metrics for choosing one of the optima are:

1. ”LV”: Utilizes the value of the conditional log-likelhood function for optima selection, i.e. the

optimization attempt that maximized (23) is chosen.

2. ”RSS”: Utilizes the quality of the in-sample fit for optima selection, i.e. the optimization at-

tempt that minimized ∑
T
t=K+1 û2

t is chosen, where K is the lag-order of the model and ût are the

residuals from the in-sample fit.

3. ”RCM”: Utilizes a Gini-Coefficient approach for optima selection, i.e. the optimization attempt

that minimizes 100 ·N2 ·
1

T −K
∑

T
t=K+1 P

λ̂ (max)(St = 1|YT = y⃗T ) · ... ·Pλ̂ (max)(St = N|YT = y⃗T )

4. ”Entropy”: Utilizes an Entropy approach for optima selection, i.e. the optimization attempt that

minimizes −100 ·N2 ·
1

T −K
∑

T
t=K+1 P

λ̂ (max)(St = 1|YT = y⃗T ) ln(P
λ̂ (max)(St = 1|YT = y⃗T ))
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MSARM: MSARM.fit

MSARM.fit(Y_T = Y_T, #Time Series to be analyzed

K = K, #Lag Order

N = N, #Number of Underlying Regimes

m = 1, #Number of Observations to condition on

Switcher = Switcher, #Vector of TRUE/FALSE values of the length K+2

threshold_value = 0.5, #Threshold for assigning regimes

max_value = 250, #Number of iterations

R_value = 5, #Number of random starting points

Crit_value = "LV", #Metric for choosing the optimisation result

all.plot = FALSE) #Set TRUE for plots of all optimisation results

MSARM.fit will give the user the following plots of the chosen optimisation results: First a plot of

the regime probability of the second regime, this plot is particularily useful when working with two

regimes and second a plot of the regime probability for all regimes, this plot is particularily useful

when working with more than two regimes:

(a) MSARM.fit: Regime Probability Plot Type 1 (b) MSARM.fit: Regime Probability Plot Type 2

Figure 1: MSARM.fit: Regime Probability Plots

Additionally MSARM.fit will give a plot of the time series, the predicted regimes and the in-sample

fit:

Figure 2: MSARM.fit: In-Sample Fit
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6.2 MSARM.predict

MSARM.predict allows its user to predict an MSARM.fit output for n.ahead periods ahead. If boot is

set to FALSE then the theory from section 4.5 and 4.6 will be implemented. Furthermore confidence

intervals can be created by setting boot = TRUE, in that case L bootstrap estimates are calculated and

used to create bootstrap-forecasting intervals. To be a bit more specific, bootstrapping is implemented

in the following way:

Algorithm 1 Bootstrap Forecasts

Require: Time series data yT , ...,y1, number of repetitions L, number of forecast steps n.ahead and
in-sample residuals û

1: for ℓ← 1 to L do
2: ydata← yT , ...,y1 ▷ Start with original data
3: for h← 1 to n.ahead do
4: ŷT+h← Forecast(ydata)
5: u← RandomSample(û)
6: ynew← ŷT+h +u
7: Append ynew to ydata
8: end for
9: Store forecast path of ynew from T +1 to T +n.ahead

10: end for

After creating L forecast paths with this algorithm one can use the mean of the forecast paths as

bootstrap forecast and the quantiles of the forecast paths as bootstrap confidence intervals.

MSARM: MSARM.predict

MSARM.predict(res_MSARM.fit, #Result from MSARM.fit

n.ahead = 1, #Number of time periods

boot = FALSE, #TRUE for bootstrapping

levels = c(0.95,0.9,0.8,0.7,0.6), #Bootstrap interval levels

´ L = 10000) #Number of bootstrap estimates

6.3 MSARM.plot

MSARM.plot allows its user to plot the forecasts from MSARM.predict to see how the time series is

expected to behave in the future. Furthermore MSARM.plot allows its user if conf = TRUE and boot

= TRUE (in MSARM.predict) to additionally plot the bootstrap confidence intervals for the forecasts.

MSARM: MSARM.plot

MSARM.plot(res_MSARM.predict, #Result from MSARM.predict

conf = FALSE, #TRUE for confidence intervals

start = c(1,1), #Beginning of the Time Series

freq = 1) #Number of seasons per time period

Standard forecast plots will include the observed time series and the forecasts in blue. If one chooses
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to plot bootstrap confidence intervals, then each confidence level will be shown with a unique gray

scale:

(a) MSARM.plot: Standard Forecasts (b) MSARM.plot: Bootstrap Confidence Intervals

Figure 3: MSARM.plot

7 MSARM vs. MSwM

In the following, we present simulation results for the setups Example 0 to Example 5. It will become

clear that MSwM struggles with certain setups, namely the more generalized setups where only a

subset of the coefficients is allowed to switch. Additionally we present in the Appendix, section 9.4,

around 300 more simulation results, where we compared the performance of MSARM and MSwM

utilizing completely randomly generated processes. But first, we turn to some explicit examples of

applying MSARM and MSwM.

7.1 Example 0: Switching Coefficients and Intercept, Non-Switching σ2

We simulated 300 observations of the following process:

Yt = cst +φ1,stYt−1 +φ2,stYt−2 +Ut ; where Ut
i.i.d.∼ N(0,σ2).

Furthermore, the parameter vector α together with the transition matrix Π have the following form:

cst φ1,st φ2,st σ2 π1 π2

Regime 1 −0.6 −0.3 0.3 1 0.95 0.05
Regime 2 0.6 0.3 −0.3 1 0.05 0.95

Table 1: Example 0: Parameter Values

The following graphics show the simulated process, as well as the the predicted regime probabilites

by MSARM with standard settings and the predicted regime probabilites by MSwM.
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Figure 4: Example 0: Simulation

(a) Example 0: MSARM Regime Probability (b) Example 0: MSwM Regime Probability

Figure 5: Example 0: Regime Probability MSARM vs MSwM

As one can easily see both packages lead to very similar results for Example 0, MSARM leads to a

slightly lower misclassification rate for the regimes, while MSwM leads to slightly better estimates

of the parameters, but the difference is very small. The exact resulting estimates and performance

indicators can be found in the following tables, the performance indicators computed were the miss-

classification rate (MCR), the mean absolute coefficient estimation error (ACoEE), the mean absolute

transition matrix estimation error (APiEE), the mean absolute error term variance estimation error

(AVarEE), and the mean absolute parameter estimation error (APaEE).

cst φ1,st φ2,st σ2 π1 π2

MSARM Regime 1 −0.4370 −0.1712 0.3706 1.0890 0.9690 0.0310
MSARM Regime 2 0.6030 0.2816 −0.2524 1.0890 0.0283 0.9717
MSwM Regime 1 −0.4503 −0.1761 0.3656 1.0862 0.9595 0.0405
MSwM Regime 2 0.5904 0.2779 −0.2459 1.0862 0.0261 0.9739

Table 2: Example 0: Estimated Parameter Values

MCR ACoEE APiEE AVarEE APaEE

MSARM 0.0300 0.0719 0.0203 0.0890 0.0576
MSwM 0.0400 0.0709 0.0167 0.0862 0.0554

Table 3: Example 0: Performance Metrics
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7.2 Example 1: Non-Switching Intercept

We simulated 300 observations of the following process:

Yt = c+φ1,stYt−1 +φ2,stYt−2 +Ut where Ut
i.i.d.∼ N(0,σ2).

Furthermore the parameter vector α together with the transition matrix Π have the following form:

c φ1,st φ2,st σ2 π1 π2

Regime 1 0.3 −0.4 0.4 1 0.95 0.05
Regime 2 0.3 0.5 −0.5 1 0.05 0.95

Table 4: Example 1: Parameter Values

The following graphics show the simulated process, as well as the the predicted regime probabilites

by MSARM with standard settings and the predicted regime probabilites by MSwM.

Figure 6: Example 1: Simulation

(a) Example 1: MSARM Regime Probability (b) Example 1: MSwM Regime Probability

Figure 7: Example 1: Regime Probability MSARM vs MSwM

As one can easily see, both packages lead to similar results for Example 1. MSARM results in a

slightly lower misclassification rate for the regimes and slightly better estimates of the parameters;

however, the difference is again quite small. The exact resulting estimates and performance indicators

can be found in the following tables:
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c φ1,st φ2,st σ2 π1 π2

MSARM Regime 1 0.3118 −0.3657 0.4596 1.0281 0.9408 0.0592
MSARM Regime 2 0.3118 0.4691 −0.4610 1.0281 0.0417 0.9583
MSwM Regime 1 0.3181 −0.3651 0.4612 1.0242 0.9280 0.0720
MSwM Regime 2 0.3182 0.4622 −0.4637 1.0242 0.0451 0.9549

Table 5: Example 1: Estimated Parameter Values

MCR ACoEE APiEE AVarEE APaEE

MSARM 0.0867 0.0312 0.0088 0.0281 0.0232
MSwM 0.0933 0.0344 0.0135 0.0242 0.0257

Table 6: Example 1: Performance Metrics

7.3 Example 2: Switching Intercept and Non-Switching Coefficients

We simulated 300 observations of the following process:

yt = cst +φ1yt−1 +φ2yt−2 +Ut ; where Ut
i.i.d.∼ N(0,σ2).

Furthermore, the parameter vector α together with the transition matrix Π have the following form:

cst φ1 φ2 σ2 π1 π2

Regime 1 2 −0.4 0.5 1 0.95 0.05
Regime 2 −2 −0.4 0.5 1 0.05 0.95

Table 7: Example 2: Parameter Values

The following graphics show the simulated process, as well as the predicted regime probabilites by

MSARM with standard settings and the predicted regime probabilites by MSwM.

Figure 8: Example 2: Simulation
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(a) Example 2: MSARM Regime Probability (b) Example 2: MSwM Regime Probability

Figure 9: Example 2: Regime Probability MSARM vs MSwM

This is now the first explicit example where MSwM completely breaks down and fails to accurately

estimate the underlying process. It is essential to emphasize that MSwM does not just fail in this spe-

cific example; instead, it tends to fail in setups of the Example 2 type in general, as further illustrated

in the Appendix, section 9.4. Unfortunately, Example 2 is the setup most similar to the one used by

Hamilton for estimating recession probabilities and is therefore particularly interesting, see Hamilton

(1994, page 697). Furthermore, we want to emphasize that MSARM does particualarily well in se-

tups like this, even reaching a misclassifcation rate of exactly 0%. The exact resulting estimates and

performance indicators can be found in the following tables:

cst φ1 φ2 σ2 π1 π2

MSARM Regime 1 2.0684 −0.3789 0.4558 1.0371 0.9607 0.0393
MSARM Regime 2 −2.0165 −0.3789 0.4558 1.0371 0.0306 0.9694
MSwM Regime 1 0.0341 0.0532 0.8272 2.1143 0.6111 0.3889
MSwM Regime 2 −0.0850 0.0532 0.8272 2.1143 0.5579 0.4421

Table 8: Example 2: Estimated Parameter Values

MCR ACoEE APiEE AVarEE APaEE

MSARM 0 0.0359 0.0150 0.0371 0.0291
MSwM 0.4400 0.9069 0.4234 1.1143 0.7803

Table 9: Example 2: Performance Metrics

7.4 Example 3: All Parameters Switch

We simulated 300 observations of the following process:

Yt = cst +φ1,stYt−1 +φ2,stYt−2 +Ut ; where Ut ∼ N(0,σ2
st
).

Furthermore, the parameter vector α together with the transition matrix Π have the following form:
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cst φ1,st φ2,st σ2
st π1 π2

Regime 1 2 −0.4 −0.5 1 0.95 0.05
Regime 2 −2 0.4 0.5 9 0.05 0.95

Table 10: Example 3: Parameter Values

The following graphics show the simulated process, as well as the predicted regime probabilites by

MSARM with standard settings and the predicted regime probabilites by MSwM.

Figure 10: Example 3: Simulation

(a) Example 3: MSARM Regime Probability (b) Example 3: MSwM Regime Probability

Figure 11: Example 3: Regime Probability MSARM vs MSwM

In this setup MSARM slightly outperforms MSwM in every metric, besides MCR where both achieve

the same result, but still both packages perform relatively similar. The exact resulting estimates and

performance indicators can be found in the following tables:

cst φ1,st φ2,st σ2
st π1 π2

MSARM Regime 1 2.0271 −0.3785 −0.5230 0.9918 0.9613 0.0387
MSARM Regime 2 −3.3138 0.3356 0.4577 9.3624 0.0311 0.9689
MSwM Regime 1 2.0506 −0.3780 −0.5245 1.0212 0.9618 0.0382
MSwM Regime 2 −3.3198 0.3354 0.4576 9.3608 0.0311 0.9689

Table 11: Example 3: Esimated Parameter Values
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MCR ACoEE APiEE AVarEE APaEE

MSARM 0.0133 0.2487 0.0151 0.1853 0.1603
MSwM 0.0133 0.2540 0.0153 0.1910 0.1639

Table 12: Example 3: Performance Metrics

7.5 Example 4: Arbitrary Subset Switching of (c,φ) and Non-Switching σ2

We simulated 300 observations of the following process:

Yt = cst +φ1Yt−1 +φ2Yt−2 +φ3Yt−3 +φ4,stYt−4 +Ut ; where Ut
i.i.d.∼ N(0,σ2).

Furthermore the parameter vector α together with the transition matrix Π have the following form:

cst φ1 φ2 φ3 φ4,st σ2 π1 π2

Regime 1 3 −0.3 0.3 0.2 −0.6 1 0.95 0.05
Regime 2 −3 −0.3 0.3 0.2 0.6 1 0.05 0.95

Table 13: Example 4: Parameter Values

The following graphics show the simulated process, as well as the the predicted regime probabilites

by MSARM with standard settings and the predicted regime probabilites by MSwM.

Figure 12: Example 4: Simulation

(a) Example 4: MSARM Regime Probability (b) Example 4: MSwM Regime Probability

Figure 13: Example 4: Regime Probability MSARM vs MSwM
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For this setup MSARM performs as well as MSwM regarding the misclassification rate, but performs

slightly worse regarding the parameter estimation, but still both packages perform very similar. The

exact resulting estimates and performance indicators can be found in the following tables:

cst φ1 φ2 φ3 φ4,st σ2 π1 π2

MSARM Regime 1 3.0273 −0.3026 0.2648 0.1882 −0.5575 1.0751 0.9687 0.0313
MSARM Regime 2 −3.1302 −0.3026 0.2648 0.1882 0.6301 1.0751 0.0239 0.9761
MSwM Regime 1 3.0232 −0.3016 0.2647 0.1874 −0.5568 1.0606 0.9690 0.0310
MSwM Regime 2 −3.1288 −0.3016 0.2647 0.1874 0.6302 1.0606 0.0239 0.9761

Table 14: Example 4: Estimated Parameter Values

MCR ACoEE APiEE AVarEE APaEE

MSARM 0.0033 0.0329 0.0224 0.0751 0.0356
MSwM 0.0033 0.0325 0.0225 0.0606 0.0335

Table 15: Example 4: Performance Metrics

7.6 Example 5: Arbitrary Subset-Switching of (c,φ) and Switching σ2

We simulated 300 observations of the following process:

yt = cst +φ1Yt−1 +φ2Yt−2 +Ut ; where Ut ∼ N(0,σ2
st
).

Furthermore the parameter vector α together with the transition matrix Π have the following form:

cst φ1 φ2 σ2
st π1 π2

Regime 1 7 −0.6 0.4 1 0.95 0.05
Regime 2 −7 −0.6 0.4 4 0.05 0.95

Table 16: Example 5: Parameter Values

The following graphics show the simulated process, as well as the the predicted regime probabilites

by MSARM with standard settings and the predicted regime probabilites by MSwM.

Figure 14: Example 5: Simulation
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(a) Example 5: MSARM Regime Probability (b) Example 5: MSwM Regime Probability

Figure 15: Example 5: Regime Probability MSARM vs MSwM

This is the second explicit example where MSwM fails to estimate the underlying process properly

while MSARM does so without difficulties. In contrast MSARM does particularily well achieving a

misclassification rate of exactly 0%. The exact resulting estimates and performance indicators can be

found in the following tables:

cst φ1 φ2 σ2
st π1 π2

MSARM Regime 1 7.0555 −0.5688 0.3610 0.9158 0.9618 0.0382
MSARM Regime 2 −6.9812 −0.5688 0.3610 4.2233 0.0298 0.9702
MSwM Regime 1 0.1615 −0.0005 0.8963 2.5668 0.8936 0.1064
MSwM Regime 2 −0.6526 −0.0005 0.8963 39.7116 0.3270 0.6730

Table 17: Example 5: Estimated Parameter Values

MCR ACoEE APiEE AVarEE APaEE

MSARM 0 0.0358 0.0160 0.1538 0.0489
MSwM 0.4533 2.5629 0.1667 18.6392 4.4436

Table 18: Example 5: Performance Metrics

8 Conclusion

In this thesis, we first provided a comprehensive and structured overview of the theoretical foundations

for estimating Markov-Switching Autoregressive (AR) models. Building on this framework, we in-

troduced MSARM, an R package developed as part of this Bachelor thesis for estimating such models

within the R environment. As discussed earlier, MSARM heavily relies on the presented theory, par-

ticularly the generalizations covered in Examples 3, 4, and 5. Subsequently, we compared MSARM

with MSwM, one of the most widely used R packages for Markov-Switching models, using approxi-

mately 300 simulation runs based on randomly generated processes. The results show that MSARM

performs comparably or better where both packages succeed and significantly outperforms MSwM in

terms of robustness. To be more specific, MSwM failed in 70 cases to estimate the underlying process

sufficiently well, where MSARM succeeded, while MSARM failed in only 7 cases where MSwM
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succeeded, implying a 10:1 advantage for MSARM. These results were achieved using MSARM’s

standard settings. As discussed in section 6.1, further performance improvements are possible by in-

creasing the number of starting points or adjusting performance metrics. Overall, MSARM proves to

be a robust and practical alternative to MSwM, especially when reducing the risk of estimation failure

is critical.
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9 Appendix

9.1 Optimal Inference of the Regimes and Derivation of the Log-Likelihood

The following derivation closely follows Hamilton (1994, page 693). First of all, it is essential to keep

in mind that (ζ̂t|t−1) j = Pθ (St = j|Yt−1 = y⃗t−1) and (ηt) j = fYt |St ,Yt−1;α(yt | j, y⃗t−1). Based on this we

can see that:

(ζ̂t|t−1⊙ηt) j = Pθ (St = j|Yt−1 = y⃗t−1) fYt |St ,Yt−1;α(yt | j, y⃗t−1)

= fYt ,St |Yt−1;θ (yt , j|⃗yt−1).

If we now sum over all potential values of St we get:
N

∑
j=1

fYt ,St |Yt−1;θ (yt , j|⃗yt−1) = fYt |Yt−1;θ (yt |⃗yt−1) = 1′(ζ̂t|t−1⊙ηt).

Additionally it is therefore true that:

(ζ̂t|t−1⊙ηt) j

1′(ζ̂t|t−1⊙ηt)
=

fYt ,St |Yt−1;θ (yt , j|⃗yt−1)

fYt |Yt−1;θ (yt |⃗yt−1)
= Pθ (St = j|Yt = y⃗t) = (ζ̂t|t) j.
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Utilizing vectors we can write:

ζ̂t|t =
(ζ̂t|t−1⊙ηt)

1′(ζ̂t|t−1⊙ηt)
.

To put it as simple as possible one could say that we basically just applied Bayes Rule. Next we want

to get from (ζ̂t|t) j = Pθ (St = j|Yt = y⃗t) to (ζ̂t+1|t) j = Pθ (St+1 = j|Yt = y⃗t). We know from (14) that

this is possible via:

Eθ (ζt+1|Yt = y⃗t) = Π
′
ζ̂t|t .

9.2 Smoothed Inference over the Regimes

The following derivation closely follows Hamilton (1994, page 700-702). First we note that St depends

on Yt−1 only through St−1 and on future observations only through St+1! One could say:

Pθ (St = j|St+1 = i,YT = y⃗T ) = Pθ (St = j|St+1 = i,Yt = y⃗t).

We can show this formally:

Pθ (St = j|St+1 = i,Yt+1 = y⃗t+1) = Pθ (St = j|St+1 = i,Yt+1 = yt+1,Yt = y⃗t)

=
Pθ (St = j,Yt+1 = yt+1|St+1 = i,Yt = y⃗t)

fYt+1|St+1,Yt ;α(yt+1|i, y⃗t)

=
fYt+1|St ,St+1,Yt ;α(yt+1| j, i, y⃗t)

fYt+1|St+1,Yt ;α(yt+1|i, y⃗t)
Pθ (St = j|St+1 = i,Yt = y⃗t)

=
fYt+1|St+1,Yt ;α(yt+1|i, y⃗t)

fYt+1|St+1,Yt ;α(yt+1|i, y⃗t)
Pθ (St = j|St+1 = i,Yt = y⃗t)

= Pθ (St = j|St+1 = i,Yt = y⃗t).

The last two steps are possible because based on (11) the distribution of Yt+1 conditional on St+1 is

independent of St . Now we can approach the derivation for t +2 in a similar way:

Pθ (St = j|St+1 = i,Yt+2 = y⃗t+2) = Pθ (St = j|St+1 = i,Yt+2 = yt+2,Yt+1 = y⃗t+1)

=
Pθ (St = j,Yt+2 = yt+2|St+1 = i,Yt+1 = y⃗t+1)

fYt+2|St+1,Yt+1;θ (yt+2|i, y⃗t+1)

=
fYt+2|St ,St+1,Yt+1;θ (yt+2| j, i, y⃗t+1)

fYt+2|St+1,Yt+1;θ (yt+2|i, y⃗t+1)
Pθ (St = j|St+1 = i,Yt+1 = y⃗t+1)

=
fYt+2|St+1,Yt+1;θ (yt+2|i, y⃗t+1)

fYt+2|St+1,Yt+1;θ (yt+2|i, y⃗t+1)
Pθ (St = j|St+1 = i,Yt+1 = y⃗t+1)

= Pθ (St = j|St+1 = i,Yt+1 = y⃗t+1)

= Pθ (St = j|St+1 = i,Yt = y⃗t).
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Simplifying the fraction is possible because:

fYt+2|St ,St+1,Yt+1;θ (yt+2| j, i, y⃗t+1) =
N

∑
k=1

fYt+2,St+2|St ,St+1,Yt+1;θ (yt+2,k| j, i, y⃗t+1)

=
N

∑
k=1

fYt+2|St+2,St ,St+1,Yt+1;α(yt+2|k, j, i, y⃗t+1)

·Pθ (St+2 = k|St+1 = i,St = j,Yt+1 = y⃗t+1)

=
N

∑
k=1

fYt+2|St+2,St+1,Yt+1;α(yt+2|k, i, y⃗t+1)

·Pθ (St+2 = k|St+1 = i,Yt+1 = y⃗t+1)

=
N

∑
k=1

fYt+2,St+2|St+1,Yt+1;θ (yt+2,k|i, y⃗t+1)

= fYt+2|St+1,Yt+1;θ (yt+2|i, y⃗t+1).

We show now by induction that this approach is generally applicable. The earlier shown cases were

the start of the induction, for the induction step we can say, we choose an arbitrary, but feasible, n and

our induction assumption is:

Pθ (St = j|St+1 = i,Yt+n = y⃗t+n) = Pθ (St = j|St+1 = i,Yt = y⃗t). (53)

Then it shall hold that:

Pθ (St = j|St+1 = i,Yt+n+1 = y⃗t+n+1) = Pθ (St = j|St+1 = i,Yt = y⃗t). (54)

To show that we write:

Pθ (St = j|St+1 = i,Yt+n+1 = y⃗t+n+1) = Pθ (St = j|St+1 = i,Yt+n+1 = yt+n+1,Yt+n = y⃗t+n)

=
fSt ,Yt+n+1|St+1,Yt+n;θ ( j,yt+n+1|i, y⃗t+n)

fYt+n+1|St+1,Yt+n;θ (yt+n+1|i, y⃗t+n)

=
fYt+n+1|St ,St+1,Yt+n;θ (yt+n+1| j, i, y⃗t+n)

fYt+n+1|St+1,Yt+n;θ (yt+n+1|i, y⃗t+n)

·Pθ (St = j|St+1 = i,Yt+n = y⃗t+n)

= Pθ (St = j|St+1 = i,Yt+n = y⃗t+n)

= Pθ (St = j|St+1 = i,Yt = y⃗t).

Thereby, the last step is just applying the induction assumption and simplifying the fraction is possible
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because:

fYt+n+1|St ,St+1,Yt+n;θ (yt+n+1| j, i, y⃗t+n) =
N

∑
k=1

fYt+n+1,St+n+1|St ,St+1,Yt+n;θ (yt+n+1,k| j, i, y⃗t+n)

=
N

∑
k=1

fYt+n+1|St+n+1,St ,St+1,Yt+n;α(yt+n+1|k, j, i, y⃗t+n)

·Pθ (St+n+1 = k|St = j,St+1 = i,Yt+n = y⃗t+n)

=
N

∑
k=1

fYt+n+1|St+n+1,St+1,Yt+n;α(yt+n+1|k, i, y⃗t+n)

·Pθ (St+n+1 = k|St+1 = i,Yt+n = y⃗t+n)

=
N

∑
k=1

fYt+n+1,St+n+1|St+1,Yt+n;θ (yt+n+1,k|i, y⃗t+n)

= fYt+n+1|St+1,Yt+n;θ (yt+n+1|i, y⃗t+n).

Once this is done it can be seen that:

Pθ (St = j|St+1 = i,Yt+m = y⃗t+m) = Pθ (St = j|St+1 = i,Yt = y⃗t).

From this follows the original claim:

Pθ (St = j|St+1 = i,YT = y⃗T ) = Pθ (St = j|St+1 = i,Yt = y⃗t).

Next we can see that:

Pθ (St = j|St+1 = i,Yt = y⃗t) =
Pθ (St = j,St+1 = i|Yt = y⃗t)

Pθ (St+1 = i|Yt = y⃗t)

=
Pθ (St+1 = i|St = j,Yt = y⃗t)Pθ (St = j|Yt = y⃗t)

Pθ (St+1 = i|Yt = y⃗t)

=
Pθ (St+1 = i|St = j)Pθ (St = j|Yt = y⃗t)

Pθ (St+1 = i|Yt = y⃗t)

=
π j,iPθ (St = j|Yt = y⃗t)

Pθ (St+1 = i|Yt = y⃗t)
.

From this it follows that:

Pθ (St = j,St+1 = i|YT = y⃗T ) = Pθ (St+1 = i|YT = y⃗T )Pθ (St = j|St+1 = i,YT = y⃗T )

= Pθ (St+1 = i|YT = y⃗T )Pθ (St = j|St+1 = i,Yt = y⃗t)

= Pθ (St+1 = i|YT = y⃗T )
π j,iPθ (St = j|Yt = y⃗t)

Pθ (St+1 = i|Yt = y⃗t)
.
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Therefore, the smoothed inference over St is given by:

Pθ (St = j|YT = y⃗T ) =
N

∑
i=1

Pθ (St = j,St+1 = i|YT = y⃗T )

=
N

∑
i=1

Pθ (St+1 = i|YT = y⃗T )
π j,iPθ (St = j|Yt = y⃗t)

Pθ (St+1 = i|Yt = y⃗t)

= Pθ (St = j|Yt = y⃗t)
N

∑
i=1

π j,iPθ (St+1 = i|YT = y⃗T )

Pθ (St+1 = i|Yt = y⃗t)

= Pθ (St = j|Yt = y⃗t)(π j,1...π j,N)


Pθ (St+1 = 1|YT = y⃗T )

Pθ (St+1 = 1|Yt = y⃗t)

...

Pθ (St+1 = N|YT = y⃗T )

Pθ (St+1 = N|Yt = y⃗t)


= Pθ (St = j|Yt = y⃗t)Π j,(ζ̂t+1|T (÷)ζ̂t+1|t).

Where Π j, is the jth row of Π. For the vector of probabilities one can therefore write:

ζ̂t|T = ζ̂t|t ⊙Π(ζ̂t+1|T (÷)ζ̂t+1|t).

This is the earlier presented formula.

9.3 EM Algorithm for Autoregressive Processes with finite lag order

The here presented proofs for the equations (38), (39) and (40) closely follow Hamilton (1990, page

63-67). We begin with (38), then go on to (39) and finish with the proof for (40). The first, essential

step for all three proofs, is to establish that the following holds:

fYT :(m+1),S |Ym;λ (⃗yT :(m+1), s⃗T |⃗ym) = fYT |ZT ;α(yT |zT ) ·PΠ(ST = sT |ST−1 = sT−1)

· fYT−1|ZT−1;α(yT−1|zT−1) ·PΠ(ST−1 = sT−1|ST−2 = sT−2)

· ...

· fYm+1|Zm+1;α(ym+1|zm+1) ·PΠ(Sm+1 = sm+1|Sm = sm)

·ρsm,...,s1 .

(55)
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This can be derived in the following way:

fYT |ZT ;α(yT |zT ) ·PΠ(ST = sT |ST−1 = sT−1)

· fYT−1|ZT−1;α(yT−1|zT−1) ·PΠ(ST−1 = sT−1|ST−2 = sT−2)

· ...

· fYm+1|Zm+1;α(ym+1|zm+1) ·PΠ(Sm+1 = sm+1|Sm = sm)

·ρsm,...,s1

= fYT |ST ,...,ST−m,YT−1,...,YT−m;α(yT |sT , ...,sT−m,yT−1, ...,yT−m)PΠ(ST = sT |ST−1 = sT−1)

· fYT−1|ST−1,...,ST−1−m,YT−1−1,...,YT−1−m;α(yT−1|sT−1, ...,sT−1−m,yT−1−1, ...,yT−1−m)

·PΠ(ST−1 = sT−1|ST−2 = sT−2)

· . . .

· fYm+2|Sm+2,...,S2,Ym+1,...,Y2;α(ym+2|sm+2, ...,s2,ym+1, ...,y2)PΠ(Sm+2 = sm+2|Sm+1 = sm+1)

· fYm+1|Sm+1,...,S1,Ym,...,Y1;α(ym+1|sm+1, ...,s1,ym, ...,y1)PΠ(Sm+1 = sm+1|Sm = sm)

·Pλ (Sm = sm, ...,S1 = s1|Ym = ym, ...,Y1 = y1).

And due to the Markov property and (12) it holds that:

fYm+1|Sm+1,...,S1,Ym,...,Y1;α(ym+1|sm+1, ...,s1,ym, ...,y1)PΠ(Sm+1 = sm+1|Sm = sm)

= fYm+1|Sm+1,...,S1,Ym,...,Y1;α(ym+1|sm+1, ...,s1,ym, ...,y1)PΠ(Sm+1 = sm+1|Sm = sm, ...,S1 = s1)

= fYm+1|Sm+1,...,S1,Ym,...,Y1;α(ym+1|sm+1, ...,s1,ym, ...,y1)

· PΠ(Sm+1 = sm+1|Sm = sm, ...,S1 = s1,Ym = ym, ...,Y1 = y1)

= fYm+1,Sm+1|Sm,...,S1,Ym,...,Y1;θ (ym+1,sm+1|sm, ...,s1,ym, ...,y1).

Logically it also holds that:

fYm+1,Sm+1|Sm,...,S1,Ym,...,Y1;θ (ym+1,sm+1|sm, ...,s1,ym, ...,y1) ·Pλ (Sm = sm, ...,S1 = s1|Ym = ym, ...,Y1 = y1)

= fYm+1,Sm+1,Sm,...,S1|Ym,...,Y1;θ (ym+1,sm+1, ...,s1|ym, ...,y1).

We assumed in our model formulation in 4.1 that there is a maximal autoregressive lag order m such

that Yt , depends only on m lags of Yt . Then it holds that:

fYm+2|Sm+2,...,S2,Ym+1,...,Y2;α(ym+2|sm+2, ...,s2,ym+1, ...,y2)PΠ(Sm+2 = sm+2|Sm+1 = sm+1)

= fYm+2|Sm+2,...,S2,S1,Ym+1,...,Y2,Y1;α(ym+2|sm+2, ...,s2,s1,ym+1, ...,y2,y1)PΠ(Sm+2 = sm+2|Sm+1 = sm+1)

= fYm+2|Sm+2,...,S2,S1,Ym+1,...,Y2,Y1;α(ym+2|sm+2, ...,s2,s1,ym+1, ...,y2,y1)

·PΠ(Sm+2 = sm+2|Sm+1 = sm+1,Sm = sm, ...,S1 = s1,Ym+1 = ym+1, ...,Y1 = y1)

= fYm+2,Sm+2|Sm+1,Sm,...,S1,Ym+1,Ym,...,Y1;θ (ym+2,sm+2|sm+1,sm, ...,s1,ym+1,ym, ...,y1).
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And thus we can write:

fYm+2,Sm+2|Sm+1,Sm,...,S1,Ym+1,Ym,...,Y1;θ (ym+2,sm+2|sm+1,sm, ...,s1,ym+1,ym, ...,y1)

· fYm+1,Sm+1,Sm,...,S1|Ym,...Y1;θ (ym+1,sm+1,sm, ...,s1|ym, ...,y1)

= fYm+2,Sm+2|Sm+1,Ym+1,Sm,...,S1,Ym,...,Y1;θ (ym+2,sm+2|sm+1,ym+1,sm, ...,s1,ym, ...,y1)

· fYm+1,Sm+1,Sm,...,S1|Ym,...Y1;θ (ym+1,sm+1,sm, ...,s1|ym, ...,y1)

= fYm+2,Sm+2,Ym+1,Sm+1,Sm,...S1|Ym,...Y1;θ (ym+2,sm+2,ym+1,sm+1,sm, ...,s1|ym, ...,y1).

We can follow this logic until T and end up with:

fYT |ST ,...,ST−m,YT−1,...,YT−m;α(yT |sT , ...,sT−m,yT−1, ...,yT−m)PΠ(ST = sT |ST−1 = sT−1)

· fYT−1|ST−1,...,ST−1−m,YT−1−1,...,YT−1−m;α(yT−1|sT−1, ...,sT−1−m,yT−1−1, ...,yT−1−m)

·PΠ(ST−1 = sT−1|ST−2 = sT−2)

· . . .

· fYm+2|Sm+2,...,S2,Ym+1,...,Y2;α(ym+2|sm+2, ...,s2,ym+1, ...,y2)PΠ(Sm+2 = sm+2|Sm+1 = sm+1)

· fYm+1|Sm+1,...,S2,Ym,...,Y1;α(ym+1|sm+1, ...,s2,ym, ...,y1)PΠ(Sm+1 = sm+1|Sm = sm)

·Pλ (Sm = sm, ...,S1 = s1|Ym = ym, ...,Y1 = y1)

= fYT ,ST ,YT−1,ST−1,...,Ym+1,Sm+1,Sm,...,S1|Ym,...,Y1;λ (yT ,sT ,yT−1,sT−1, ...,ym+1,sm+1,sm, ...,s1|ym, ...,y1)

= fYT :(m+1),S |Ym;λ (⃗yT :(m+1), s⃗T |⃗ym).

Derivation of (38): Now that this first step has been established, we can now focus on the derivation

of the first equation, thereby we are closely following Hamilton (1990, page 63-65). We start with

(55), it holds that:

ln( fYT :(m+1),S |Ym;λ (⃗yT :(m+1), s⃗T |⃗ym)) = ln( fYT |ZT ;α(yT |zT ))

+ ln(PΠ(ST = sT |ST−1 = sT−1))

+ ln( fYT−1|ZT−1;α(yT−1|zT−1))

+ ln(PΠ(ST1 = sT−1|ST−2 = sT−2))

+ . . .

+ ln( fYm+1|Zm+1;α(ym+1|zm+1))

+ ln(PΠ(Sm+1 = sm+1|Sm = sm))

+ ln(ρsm,...,s1).

(56)

We remember that if we have L(x,y) and ln(L(x,y)) = l(x,y), then it is true that:

∂ l(x,y)

∂x
=

1

L(x,y)

∂L(x,y)

∂x
,

and thus

∂L(x,y)

∂x
=

∂ l(x,y)

∂x
L(x,y).
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We apply this now:

fYT :(m+1),S |Ym;λ (⃗yT :(m+1), s⃗T |⃗ym)
∂ ln( fYT :(m+1),S |Ym;λ (⃗yT :(m+1), s⃗T |⃗ym))

∂πi, j

=
∂ fYT :(m+1),S |Ym;λ (⃗yT :(m+1), s⃗T |⃗ym)

∂πi, j
,

where:

∂ ln( fYT :(m+1),S |Ym;λ (⃗yT :(m+1), s⃗T |⃗ym))

∂πi, j
=

T

∑
t=m+1

∂ ln(PΠ(St = st |St−1 = st−1))

∂πi, j
.

One should note that:

∂ ln(PΠ(St = st |St−1 = st−1))

∂πi, j
=


1

πi, j
, if St = j and St−1 = i

0, otherwise

.

In the following, we will use the Kronecker delta as notation in the following way:

δ[A] =

1, if A is true

0, otherwise
,

thus:

∂ fYT :(m+1),S |Ym;λ (⃗yT :(m+1), s⃗T |⃗ym)

∂πi, j
= fYT :(m+1),S |Ym;λ (⃗yT :(m+1), s⃗T |⃗ym)

T

∑
t=m+1

∂ ln(PΠ(St = st |St−1 = st−1))

∂πi, j

= fYT :(m+1),S |Ym;λ (⃗yT :(m+1), s⃗T |⃗ym)
1

πi, j

T

∑
t=m+1

δ[St= j,St−1=i].

We remember that the following holds:

Qλl ,⃗yT (λl+1) = ∑
s⃗T

ln( fYT :(m+1),S |Ym;λl+1 (⃗yT :(m+1), s⃗T |⃗ym)) fYT :(m+1),S |Ym;λl (⃗yT :(m+1), s⃗T |⃗ym).

Therefore, we can say:

∂Qλl ,⃗yT (λl+1)

∂π
(l+1)
i, j

= ∑
s⃗T

∂ ln( fYT :(m+1),S |Ym;λl+1 (⃗yT :(m+1), s⃗T |⃗ym))

∂π
(l+1)
i, j

fYT :(m+1),S |Ym;λl (⃗yT :(m+1), s⃗T |⃗ym)

= ∑
s⃗T

1

π
(l+1)
i, j

T

∑
t=m+1

δ[St= j,St−1=i] fYT :(m+1),S |Ym;λl (⃗yT :(m+1), s⃗T |⃗ym).

It is now essential to notice that:

∑
s⃗T

δ[St= j,St−1=i] fYT :(m+1),S |Ym;λl (⃗yT :(m+1), s⃗T |⃗ym) = fYT :(m+1),St ,St−1|Ym;λl (⃗yT :(m+1), j, i)

= Pλl (St = j,St−1 = i|YT = y⃗T )

· fYT :(m+1)|Ym;λl (⃗yT :(m+1) |⃗ym),
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and that therefore:

∂Qλl ,⃗yT (λl+1)

∂π
(l+1)
i, j

= ∑
s⃗T

1

π
(l+1)
i, j

T

∑
t=m+1

δ[St= j,St−1=i] fYT :(m+1),S |Ym;λl (⃗yT :(m+1), s⃗T |⃗ym)

=
1

π
(l+1)
i, j

T

∑
t=m+1

∑
s⃗T

δ[St= j,St−1=i] fYT :(m+1),S |Ym;λl (⃗yT :(m+1), s⃗T |⃗ym)

=
1

π
(l+1)
i, j

T

∑
t=m+1

Pλl (St = j,St−1 = i|YT = y⃗T ) fYT :(m+1)|Ym;λl (⃗yT :(m+1) |⃗ym).

Under the constraint ∑
N
j=1 πi, j = 1 we can now form the Lagrangian:

Qλl ,⃗yT (λl+1)−µi(
N

∑
j=1

πi, j−1).

This leads to the following first-order conditons:

∂Qλl ,⃗yT (λl+1)

∂π
(l+1)
i, j

= µi, for j = 1, ...,N.

We insert our result from above:

1

π
(l+1)
i, j

T

∑
t=m+1

Pλl (St = j,St−1 = i|YT = y⃗T ) fYT :(m+1)|Ym;λl (⃗yT :(m+1) |⃗ym) = µi

⇔
T

∑
t=m+1

Pλl (St = j,St−1 = i|YT = y⃗T ) =
π
(l+1)
i, j µi

fYT :(m+1)|Ym;λl (⃗yT :(m+1) |⃗ym)
.

We now sum over 1, ...,N, which leads to:

N

∑
j=1

T

∑
t=m+1

Pλl (St = j,St−1 = i|YT = y⃗T ) =
N

∑
j=1

π
(l+1)
i, j µi

fYT :(m+1)|Ym;λl (⃗yT :(m+1) |⃗ym)

⇔
T

∑
t=m+1

Pλl (St−1 = i|YT = y⃗T ) =
µi

fYT :(m+1)|Ym;λl (⃗yT :(m+1) |⃗ym)
.

If we now insert this in the result from above we get:

T

∑
t=m+1

Pλl (St = j,St−1 = i|YT = y⃗T ) =
π
(l+1)
i, j µi

fYT :(m+1)|Ym;λl (⃗yT :(m+1) |⃗ym)
= π

(l+1)
i, j

T

∑
t=m+1

Pλl (St−1 = i|YT = y⃗T )

⇔ π
(l+1)
i, j =

∑
T
t=m+1 Pλl (St = j,St−1 = i|YT = y⃗T )

∑
T
t=m+1 Pλl (St−1 = i|YT = y⃗T )

,

this concludes the derivation of (38).

Derivation of (39): With that, we get to the second equation. In the following we closely follow

Hamilton (1990, page 65-66). Again, we start with (55), but this time we take the derivative in α:

∂ fYT :(m+1),S |Ym;λ (⃗yT :(m+1), s⃗T |⃗ym)

∂α
= fYT :(m+1),S |Ym;λ (⃗yT :(m+1), s⃗T |⃗ym)

T

∑
t=m+1

∂ ln( fYt |Zt ;α(yt |zt))

∂α
.
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It is important to note here that fYt |Zt ;α(yt |zt) depends on St through Zt , because

Zt = (St ,St−1, ...,St−m,Yt−1,Yt−2, ...,Yt−m), but at most for the dates t, ..., t−m, thus:

∂Qλl ,⃗yT (λl+1)

∂αl+1
=

∂

∂αl+1
∑
s⃗T

ln( fYT :(m+1),S |Ym;λl+1 (⃗yT :(m+1), s⃗T |⃗ym)) fYT :(m+1),S |Ym;λl (⃗yT :(m+1), s⃗T |⃗ym)

= ∑
s⃗T

∂ ln( fYT :(m+1),S |Ym;λl+1 (⃗yT :(m+1), s⃗T |⃗ym))

∂αl+1
fYT :(m+1),S |Ym;λl (⃗yT :(m+1), s⃗T |⃗ym)

(56)
= ∑

s⃗T

fYT :(m+1),S |Ym;λl (⃗yT :(m+1), s⃗T |⃗ym)
T

∑
t=m+1

∂ ln( fYt |Zt ;αl+1(yt |zt))

∂αl+1

=
T

∑
t=m+1

∑
s⃗T

∂ ln( fYt |Zt ;αl+1(yt |zt))

∂αl+1
fYT :(m+1),S |Ym;λl (⃗yT :(m+1), s⃗T |⃗ym)

=
T

∑
t=m+1

N

∑
st=1
· · ·

N

∑
st−m=1

∂ ln( fYt |Zt ;αl+1(yt |zt))

∂αl+1

·

(
N

∑
sT=1
· · ·

N

∑
st+1=1

N

∑
st−m−1=1

· · ·
N

∑
s1=1

fYT :(m+1),S |Ym;λl (⃗yT :(m+1), s⃗T |⃗ym)

)

=
T

∑
t=m+1

N

∑
st=1
· · ·

N

∑
st−m=1

∂ ln( fYt |Zt ;αl+1(yt |zt))

∂αl+1

·Pλl (St = st , ...,St−m = st−m|YT = yT , ...,Y1 = y1)

· fYT ,...,Ym+1|Ym,...,Y1;λl (yT , ...,ym+1|ym, ...,y1).

These steps are possible because fYt |Zt ;α(yt |zt) at most only depends on St , ...,St−m. This leads us to

the following first order condition:

fYT :(m+1)|Ym;λl (⃗yT :(m+1) |⃗ym)
T

∑
t=m+1

N

∑
st=1
· · ·

N

∑
st−m=1

∂ ln( fYt |Zt ;αl+1(yt |zt))

∂αl+1

·Pλl (St = st ,St−1 = st−1, ...,St−m = st−m|YT = y⃗T ) = 0,

which is equivalent to (39).

Derivation of (40): Now we can turn to equation number three, here we closely follow the deriva-

tions presented by Hamilton (1990, page 66-67). We start with (56) and take the derivative in ρim,...,i1 :

∂ ln( fYT :(m+1),S |Ym;λl (⃗yT :(m+1), s⃗T |⃗ym))

∂ρim,...,i1
=

1

ρim,...,i1
·δ[Sm=im,...,S1=i1],

because of this, it holds that:

∂Qλl ,⃗yT (λl+1)

∂ρ
(l+1)
im,...,i1

= ∑
s⃗T

∂ ln( fYT :(m+1),S |Ym;λl+1 (⃗yT :(m+1), s⃗T |⃗ym))

∂ρ
(l+1)
im,...,i1

fYT :(m+1),S |Ym;λl (⃗yT :(m+1), s⃗T |⃗ym)

= ∑
s⃗T

1

ρ
(l+1)
im,...,i1

δ[Sm=im,...,S1=i1] fYT :(m+1),S |Ym;λl (⃗yT :(m+1), s⃗T |⃗ym).

47



We want to optimize Qλl ,⃗yT (λl+1) under the constraint ∑
Nm

j=1(ρl+1) j = 1, i.e that the sum of all elements

of ρl+1 shall be 1. Thus we construct the Lagrangian:

Qλl ,⃗yT (λl+1)−µ(
Nm

∑
j=1

(ρl+1) j−1)).

Which leads to the first order condition:

∑
s⃗T

1

ρ
(l+1)
im,...,i1

δ[Sm=im,...,S1=i1] fYT :(m+1),S |Ym;λl (⃗yT :(m+1), s⃗T |⃗ym) = µ

⇔∑
s⃗T

δ[Sm=im,...,S1=i1] fYT :(m+1),S |Ym;λl (⃗yT :(m+1), s⃗T |⃗ym) = ρ
(l+1)
im,...,i1 µ

⇔ fSm,...,S1,YT ,...,Ym+1|Ym,...,Y1;λl (im, ..., i1,yT , ...,ym+1|ym, ...,y1) = ρ
(l+1)
im,...,i1 µ

⇔ Pλl (Sm = im, ...,S1 = i1|YT = y⃗T ) fYT :(m+1)|Ym;λl (⃗yT :(m+1) |⃗ym) = µρ
(l+1)
im,...,i1 .

If we now sum over all potential values of (i1, ...im) we end up with:

N

∑
im=1
· · ·

N

∑
i1=1

Pλl (Sm = im, ...,S1 = i1|YT = y⃗T ) fYT :(m+1)|Ym;λl (⃗yT :(m+1) |⃗ym) =
N

∑
im=1
· · ·

N

∑
i1=1

µρ
(l+1)
im,...,i1

⇔ fYT :(m+1)|Ym;λl (⃗yT :(m+1) |⃗ym) = µ.

We insert this for µ and get:

Pλl (Sm = im, ...,S1 = i1|YT = y⃗T ) fYT :(m+1)|Ym;λl (⃗yT :(m+1) |⃗ym) = fYT :(m+1)|Ym;λl (⃗yT :(m+1) |⃗ym)ρ
(l+1)
im,...,i1

⇔ Pλl (Sm = im, ...,S1 = i1|YT = y⃗T ) = ρ
(l+1)
im,...,i1 .

This concludes the derivation of the EM algorithm for models with an underlying Markov-Chain and

a dependence on a maximum lag order.

9.4 Stress Testing MSARM and MSwM: Results of 288 Random Processes

In section 7, we presented the results of six simulations comparing MSARM and MSwM. While these

already demonstrated that MSwM can fail to accurately estimate certain processes where MSARM

succeeds, we wanted to ensure that these findings were not driven by specific process choices. There-

fore, we conducted an additional simulation study, randomly generating 48 time series for the Exam-

ples 0 to 5. To ensure robustness, the time series were generated with varying sample sizes: 50, 100,

150, 200, 250, 300, 350 and 400 observations (six series per sample size). Each process featured ex-

actly two regimes, while the AR lag order was randomly drawn from a uniform distribution between

1 and 4. For Example 4 and 5, the switching vector was randomly generated. In Example 4, an addi-

tional check ensured that at least two parameters switched. The transition matrices were constructed

such that the probability of remaining in the same state ranged between 90% and 99.5%. Intercepts

were drawn from a normal distribution with µ = 0 and σ2 = 25. AR coefficients were constructed

such that φk were sampled from uniform distributions over
( −1

k+1 ,
1

k+1

)
, and the error term standard

deviation was drawn from a uniform distribution over (0.5,3). For each case where either MSARM
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or MSwM failed (defined as a misclassification rate above 25% or an APaEE above 0.5), we addi-

tionally applied a Ljung-Box test at the 5% level to assess whether the generated time series exhibited

statistically significant autocorrelation. The following graphic and tables summarize the results for

Examples 0 to 5. In the graphic, the blue areas highlight cases where MSARM outperformed MSwM

(lower MCR). The tables indicate whether MSARM or MSwM failed and whether the Ljung-Box test

rejected the white noise hypothesis. Throughout the discussion, we state that it ”would have been

better to choose package Y instead of package X” whenever one package delivered a valid estimation

while the other did not.

Example 0: For Example 0 we find that both MSARM and MSwM perform relatively similar,

whereby MSARM performs slightly better, as there are 14 cases where MSARM fails to fulfill the

quality criteria set by us, while MSwM fails 20 times to fulfill our criteria. Out of the 14 times

MSARM failed, 11 times MSwM failed too. Therefore out of 48 randomly generated processes only

3 times it would have been better to use MSwM instead of MSARM (with standard settings), but it

would have been in 9 cases better to use MSARM instead of MSwM. Therefore, one obtains a ratio

of 3:1 in favor of MSARM. This is also reflected in Figure 16, where it becomes clear, that MSARM

slightly tends to outperform MSwM.

Figure 16: Example 0: 48 Random Processes

50 100 150 200 250 300 350 400

Process 1 MSwM MSARM NA NA MSARM MSwM NA NA
(TRUE) (FALSE) NA NA (TRUE) (TRUE) NA NA

Process 2 NA NA NA NA NA NA NA Both
NA NA NA NA NA NA NA (TRUE)

Process 3 Both NA MSwM Both NA MSwM MSwM MSwM
(TRUE) NA (TRUE) (TRUE) NA (TRUE) (TRUE) (TRUE)

Process 4 Both Both NA NA NA NA NA Both
(TRUE) (FALSE) NA NA NA NA NA (TRUE)

Process 5 MSARM Both MSwM NA Both Both Both Both
(TRUE) (FALSE) (TRUE) NA (TRUE) (TRUE) (FALSE) (TRUE)

Process 6 MSwM NA NA NA NA MSwM NA NA
(TRUE) NA NA NA NA (TRUE) NA NA

Table 19: Example 0: Package Failure and Ljung-Box Test Results
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Example 1: For Example 1 we find that MSARM tends to outperform MSwM. There are 18 cases

where MSARM fails and 25 cases where MSwM fails. Out of the 18 cases where MSARM failed,

MSwM failed in 17 cases too. Thus, there was only 1 case were one would have been better off

choosing MSwM instead of MSARM (with standard settings). Meanwhile, there were 8 cases where

one would have been better off choosing MSARM instead of MSwM. Therefore, one obtains a ratio

of 8:1 in favor of MSARM, which is clearly reflected in Figure 17. Additionally, it should be noted

that in the single case where it would have been better to choose MSwM over MSARM, it was not

possible to reject the hypothesis that the underlying process is white noise, indicating a rather difficult

estimation setup.

Figure 17: Example 1: 48 Random Processes

50 100 150 200 250 300 350 400

Process 1 NA NA NA Both Both MSwM NA NA
NA NA NA (TRUE) (TRUE) (TRUE) NA NA

Process 2 Both NA MSwM Both NA NA Both Both
(TRUE) NA (FALSE) (TRUE) NA NA (FALSE) (TRUE)

Process 3 MSARM Both Both MSwM NA MSwM NA Both
(FALSE) (TRUE) (TRUE) (TRUE) NA (TRUE) NA (TRUE)

Process 4 Both Both NA NA Both NA NA Both
(TRUE) (TRUE) NA NA (TRUE) NA NA (TRUE)

Process 5 NA MSwM MSwM NA NA NA Both Both
NA (TRUE) (TRUE) NA NA NA (TRUE) (TRUE)

Process 6 Both NA NA NA Both MSwM NA MSwM
(FALSE) NA NA NA (TRUE) (FALSE) NA (TRUE)

Table 20: Example 1: Package Failure and Ljung-Box Test Results

Example 2: For Example 2 we find an even extremer case of MSARM outperforming MSwM.

Out of the 48 processes, there were only 2 cases where MSwM managed to estimate the underlying

process reasonably well. There was only 1 case where it would have been better to choose MSwM

over MSARM, while in 25 cases it would have been better to choose MSARM over MSwM, a ratio

of 25:1 in favor of MSARM. Furthermore, it should be noted that again, the only case where MSwM

would have been superior to MSARM was for a time series where the hypothesis that the underlying

process is just white noise was not rejected.
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Figure 18: Example 2: 48 Random Processes

50 100 150 200 250 300 350 400

Process 1 MSwM MSwM Both MSwM Both MSwM MSwM Both
(TRUE) (TRUE) (TRUE) (TRUE) (TRUE) (TRUE) (TRUE) (TRUE)

Process 2 Both Both MSwM MSwM MSwM MSwM MSwM Both
(TRUE) (TRUE) (TRUE) (TRUE) (TRUE) (TRUE) (TRUE) (TRUE)

Process 3 Both MSwM MSwM Both Both Both Both MSwM
(FALSE) (TRUE) (TRUE) (TRUE) (TRUE) (TRUE) (TRUE) (TRUE)

Process 4 NA Both Both Both Both MSwM Both MSwM
NA (TRUE) (TRUE) (TRUE) (FALSE) (TRUE) (TRUE) (TRUE)

Process 5 MSwM Both Both MSwM MSwM MSwM MSwM Both
(TRUE) (TRUE) (TRUE) (TRUE) (TRUE) (TRUE) (TRUE) (TRUE)

Process 6 Both MSARM MSwM Both MSwM MSwM MSwM MSwM
(TRUE) (FALSE) (TRUE) (TRUE) (TRUE) (TRUE) (TRUE) (TRUE)

Table 21: Example 2: Package Failure and Ljung-Box Test Results

Example 3: Example 3 again shows that MSARM tends to perform better than MSwM, especially

regarding more general setups. This is the first example were the error term variance is allowed to

switch and it turns out that there was not a single case, where it would have been better to use MSwM

instead of MSARM. Additionally one should note that there were 12 cases where MSwM failed to

meet our criteria, while MSARM was capable of doing so.

Figure 19: Example 3: 48 Random Processes
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50 100 150 200 250 300 350 400

Process 1 Both Both MSwM NA NA MSwM MSwM MSwM
(TRUE) (TRUE) (TRUE) NA NA (TRUE) (TRUE) (TRUE)

Process 2 NA NA NA NA NA NA NA Both
NA NA NA NA NA NA NA (TRUE)

Process 3 Both MSwM NA NA NA Both NA NA
(TRUE) (TRUE) NA NA NA (TRUE) NA NA

Process 4 Both Both MSwM MSwM MSwM NA NA Both
(TRUE) (FALSE) (TRUE) (TRUE) (TRUE) NA NA (TRUE)

Process 5 NA Both NA MSwM NA Both Both MSwM
NA (TRUE) NA (TRUE) NA (TRUE) (FALSE) (TRUE)

Process 6 NA Both NA NA NA NA MSwM MSwM
NA (FALSE) NA NA NA NA (TRUE) (TRUE)

Table 22: Example 3: Package Failure and Ljung-Box Test Results

Example 4: For Example 4 we find similar results, again MSARM tends to perform better than

MSwM, there is only 1 case where MSARM did not meet the quality criteria while MSwM did.

Meanwhile, there are 10 cases where it would have been better to utilize MSARM instead of MSwM,

leading to a ratio of 10:1 in favor of MSARM.

Figure 20: Example 4: 48 Random Processes

50 100 150 200 250 300 350 400

Process 1 NA MSwM Both NA MSwM Both MSwM NA
NA (TRUE) (TRUE) NA (TRUE) (TRUE) (TRUE) NA

Process 2 Both Both Both NA NA Both NA Both
(TRUE) (TRUE) (TRUE) NA NA (TRUE) NA (TRUE)

Process 3 Both Both MSwM NA Both NA NA NA
(FALSE) (TRUE) (TRUE) NA (TRUE) NA NA NA

Process 4 Both NA Both MSwM Both Both MSwM MSwM
(FALSE) NA (TRUE) (TRUE) (TRUE) (TRUE) (TRUE) (TRUE)

Process 5 Both NA MSwM Both Both MSwM Both Both
(TRUE) NA (TRUE) (TRUE) (TRUE) (TRUE) (TRUE) (TRUE)

Process 6 Both Both MSwM Both Both MSARM NA Both
(TRUE) (TRUE) (TRUE) (TRUE) (FALSE) (TRUE) NA (TRUE)

Table 23: Example 4: Estimation Results and Ljung-Box Test Outcomes

Example 5: Last, but not least we find for Example 5 similar results to the previous Examples. We

have 1 case, were MSARM did not reach our quality criteria, while MSwM did, but there were 6 cases
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were MSwM failed to meet the criteria, while MSARM did. Therefore, we get a ratio of 6:1, in favor

of MSARM.

Figure 21: Example 5: 48 Random Processes

50 100 150 200 250 300 350 400

Process 1 Both Both NA NA NA NA NA Both
(TRUE) (TRUE) NA NA NA NA NA (TRUE)

Process 2 Both MSARM Both Both Both NA NA Both
(TRUE) (TRUE) (TRUE) (TRUE) (TRUE) NA NA (TRUE)

Process 3 Both MSwM Both NA Both Both MSwM NA
(FALSE) (TRUE) (TRUE) NA (TRUE) (TRUE) (TRUE) NA

Process 4 Both MSwM Both Both NA NA NA Both
(TRUE) (TRUE) (TRUE) (TRUE) NA NA NA (TRUE)

Process 5 Both NA MSwM Both Both Both NA Both
(TRUE) NA (TRUE) (TRUE) (TRUE) (TRUE) NA (TRUE)

Process 6 Both MSwM Both NA Both NA MSwM Both
(TRUE) (TRUE) (TRUE) NA (TRUE) NA (TRUE) (TRUE)

Table 24: Example 5: Estimation Results and Ljung-Box Test Outcomes
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